咨询与建议

限定检索结果

文献类型

  • 1,879 篇 期刊文献
  • 1,749 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 3,648 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,360 篇 工学
    • 2,042 篇 计算机科学与技术...
    • 1,464 篇 软件工程
    • 634 篇 电气工程
    • 591 篇 控制科学与工程
    • 311 篇 机械工程
    • 292 篇 信息与通信工程
    • 131 篇 石油与天然气工程
    • 113 篇 动力工程及工程热...
    • 112 篇 土木工程
    • 110 篇 电子科学与技术(可...
    • 74 篇 仪器科学与技术
    • 74 篇 材料科学与工程(可...
    • 63 篇 交通运输工程
    • 62 篇 环境科学与工程(可...
    • 53 篇 建筑学
    • 52 篇 力学(可授工学、理...
    • 43 篇 水利工程
    • 39 篇 化学工程与技术
    • 34 篇 航空宇航科学与技...
  • 1,758 篇 理学
    • 1,444 篇 数学
    • 226 篇 系统科学
    • 196 篇 统计学(可授理学、...
    • 115 篇 物理学
    • 51 篇 生物学
    • 45 篇 化学
    • 35 篇 地球物理学
  • 369 篇 管理学
    • 316 篇 管理科学与工程(可...
    • 71 篇 工商管理
    • 49 篇 图书情报与档案管...
  • 63 篇 医学
  • 52 篇 经济学
    • 49 篇 应用经济学
  • 22 篇 农学
  • 17 篇 法学
  • 16 篇 教育学
  • 9 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 3,648 篇 optimization alg...
  • 272 篇 optimization
  • 149 篇 algorithms
  • 93 篇 design
  • 85 篇 machine learning
  • 55 篇 particle swarm o...
  • 54 篇 genetic algorith...
  • 51 篇 convergence
  • 50 篇 optimal control
  • 41 篇 simulation
  • 35 篇 artificial intel...
  • 33 篇 genetic algorith...
  • 33 篇 converge
  • 31 篇 predictive contr...
  • 31 篇 optimisation
  • 31 篇 heuristic algori...
  • 30 篇 objective functi...
  • 30 篇 deep learning
  • 30 篇 distribute
  • 28 篇 model predictive...

机构

  • 12 篇 duy tan univ ins...
  • 10 篇 national key lab...
  • 8 篇 amman arab univ ...
  • 7 篇 stanford univers...
  • 7 篇 univ technol syd...
  • 6 篇 georgia inst tec...
  • 6 篇 department of co...
  • 6 篇 google research ...
  • 6 篇 school of artifi...
  • 6 篇 semnan univ dept...
  • 5 篇 politecn milan d...
  • 5 篇 tu wien austria
  • 5 篇 ain shams univ f...
  • 5 篇 google deepmind ...
  • 5 篇 school of data s...
  • 5 篇 school of comput...
  • 5 篇 university of mi...
  • 5 篇 ton duc thang un...
  • 4 篇 college of compu...
  • 4 篇 semnan univ fac ...

作者

  • 12 篇 abualigah laith
  • 11 篇 ehteram mohammad
  • 9 篇 gandomi amir h.
  • 9 篇 hasanipanah mahd...
  • 9 篇 notarstefano giu...
  • 9 篇 ishibuchi hisao
  • 8 篇 zhan zhi-hui
  • 8 篇 zhang jun
  • 7 篇 neumann frank
  • 7 篇 rashid tarik a.
  • 7 篇 ahmed ali najah
  • 7 篇 hasanien hany m.
  • 7 篇 quirynen rien
  • 7 篇 pan jeng-shyang
  • 7 篇 zhang lijun
  • 6 篇 sundaram shreyas
  • 6 篇 neumann aneta
  • 6 篇 wang lei
  • 6 篇 zhang lei
  • 6 篇 yang shengxiang

语言

  • 3,185 篇 英文
  • 409 篇 其他
  • 52 篇 中文
  • 5 篇 土耳其文
  • 4 篇 法文
  • 4 篇 斯洛文尼亚文
  • 3 篇 德文
  • 1 篇 西班牙文
  • 1 篇 塞尔维亚文
检索条件"主题词=Optimization Algorithms"
3648 条 记 录,以下是511-520 订阅
排序:
FEATURE-BASED EVOLUTIONARY DIVERSITY optimization OF DISCRIMINATING INSTANCES FOR CHANCE-CONSTRAINED optimization PROBLEMS
arXiv
收藏 引用
arXiv 2025年
作者: Ahouei, Saba Sadeghi Antipov, Denis Neumann, Aneta Neumann, Frank Optimisation and Logistics School of Computer and Mathematical Sciences The University of Adelaide Adelaide Australia LIP6 Sorbonne University Paris France
Algorithm selection is crucial in the field of optimization, as no single algorithm performs perfectly across all types of optimization problems. Finding the best algorithm among a given set of algorithms for a given ... 详细信息
来源: 评论
An Adaptive Dropout Approach for High-Dimensional Bayesian optimization
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Jundi Zhan, Dawei School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu China
Bayesian optimization (BO) is a widely used algorithm for solving expensive black-box optimization problems. However, its performance decreases significantly on high-dimensional problems due to the inherent high-dimen... 详细信息
来源: 评论
Design optimization of cam-follower mechanisms using Rao algorithms and their variants
收藏 引用
EVOLUTIONARY INTELLIGENCE 2024年 第2期17卷 745-770页
作者: Rao, R., V Pawar, R. B. SV Natl Inst Technol Dept Mech Engn Surat 395007 Gujarat India
This paper presents the design optimization of cam-follower mechanisms (CFM) with eccentric roller type follower using recently developed advanced optimization algorithms, namely Rao, SAMP-Rao, and QO-Rao algorithms. ... 详细信息
来源: 评论
Maximum Independent Set Using Hummingbird optimization  4th
Maximum Independent Set Using Hummingbird Optimization
收藏 引用
4th International Conference on Advanced Network Technologies and Intelligent Computing, ANTIC 2024
作者: Verma, Ritika Mahato, Dharamendra Prasad Department of Computer Science and Engineering National Institute of Technology Hamirpur HP Hamirpur177 005 India
The Maximum Independent Set problem in distributed systems is an NP-hard problem. This paper uses a soft computing approach to solve this problem. In this paper, we use Hummingbird optimization to solve the problem. W... 详细信息
来源: 评论
Research on Firefly Algorithm Enhancement by Diversifying Swarm  8th
Research on Firefly Algorithm Enhancement by Diversifying Sw...
收藏 引用
8th International Conference on Cognitive Computing, ICCC 2024, Held as Part of the Services Conference Federation, SCF 2024
作者: Pan, Xiuqin Ren, Shuangqing School of Information Engineering Minzu University of China Beijing100081 China
In response to the issues faced by the traditional Firefly Algorithm (FA), particularly its tendency to become trapped in local optima and slow convergence during the global optimization process, especially for high-d... 详细信息
来源: 评论
Theoretical Approach on Assessing the Accuracy of the Shortest Path Non-Optimal Algorithm for 2-Dimensional Grids with Obstacles  24
Theoretical Approach on Assessing the Accuracy of the Shorte...
收藏 引用
8th International Conference on algorithms, Computing and Systems, ICACS 2024
作者: Mo, Chenghao Oyster River High School DurhamNH United States
In many applications such as urban navigation and robotics, finding the shortest path in a 2D grid is crucial but computationally expensive using traditional optimal algorithms like Floyd-Warshall or Dijkstra. These t... 详细信息
来源: 评论
An iterated greedy algorithm based on NSGA-II for distributed hybrid flow shop scheduling problem  3
An iterated greedy algorithm based on NSGA-II for distribute...
收藏 引用
3rd International Conference on Communications, Information System, and Data Science, CISDS 2024
作者: Liu, Dandan Liang, Xu Zou, Zhiyuan School of Computing Beijing Information Science and Technology University Beijing China
The distributed hybrid flow shop scheduling problems (DHFSP) widely exist in various industrial production processes, and thus have received widespread attention. However, studies on HFSP considering green objective i... 详细信息
来源: 评论
A New Dual-Population Evolutionary Algorithm Leveraging Objective-Constraint Relationships for Constrained Multi-Objective optimization
SSRN
收藏 引用
SSRN 2025年
作者: Ye, Jialu Tan, Chaogui Xia, Yizhang Hou, Zhanglu Liu, Yuan Zou, Juan Hunan Engineering Research Center of intelligent System Optimization and Security Key Laboratory of Intelligent Computing and Information Processing Ministry of Education Hunan National Applied Mathematics Center China Xiangtan University China
Population co-evolution strategies are widely used to handle constrained multi-objective optimization problems (CMOPs). However, existing coevolutionary algorithms oversimplify population collaboration and are rigid i... 详细信息
来源: 评论
An exponentially stable discrete-time primal-dual algorithm for distributed constrained optimization
arXiv
收藏 引用
arXiv 2025年
作者: Ren, Xiaoxing Bin, Michelangelo Notarnicola, Ivano Parisini, Thomas Department of Electrical and Electronic Engineering Imperial College London London United Kingdom Department of Electrical Electronic and Information Engineering University of Bologna Italy Department of Electronic Systems Aalborg University Denmark Department of Engineering and Architecture University of Trieste Trieste Italy
This paper studies a distributed algorithm for constrained consensus optimization that is obtained by fusing the Arrow-Hurwicz-Uzawa primal-dual gradient method for centralized constrained optimization and the Wang-El... 详细信息
来源: 评论
Causal Bayesian optimization with Unknown Graphs
arXiv
收藏 引用
arXiv 2025年
作者: Durand, Jean Annadani, Yashas Bauer, Stefan Parbhoo, Sonali Imperial College London United Kingdom Germany
Causal Bayesian optimization (CBO) is a methodology designed to optimize an outcome variable by leveraging known causal relationships through targeted interventions. Traditional CBO methods require a fully and accurat... 详细信息
来源: 评论