咨询与建议

限定检索结果

文献类型

  • 2,250 篇 期刊文献
  • 1,749 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 4,019 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,685 篇 工学
    • 2,112 篇 计算机科学与技术...
    • 1,480 篇 软件工程
    • 747 篇 电气工程
    • 611 篇 控制科学与工程
    • 333 篇 机械工程
    • 320 篇 信息与通信工程
    • 153 篇 动力工程及工程热...
    • 146 篇 石油与天然气工程
    • 129 篇 电子科学与技术(可...
    • 126 篇 土木工程
    • 90 篇 材料科学与工程(可...
    • 88 篇 仪器科学与技术
    • 74 篇 环境科学与工程(可...
    • 72 篇 交通运输工程
    • 69 篇 力学(可授工学、理...
    • 64 篇 建筑学
    • 62 篇 化学工程与技术
    • 57 篇 航空宇航科学与技...
    • 54 篇 水利工程
    • 47 篇 生物医学工程(可授...
  • 1,905 篇 理学
    • 1,481 篇 数学
    • 230 篇 系统科学
    • 198 篇 统计学(可授理学、...
    • 195 篇 物理学
    • 65 篇 化学
    • 59 篇 生物学
  • 390 篇 管理学
    • 338 篇 管理科学与工程(可...
    • 72 篇 工商管理
    • 49 篇 图书情报与档案管...
  • 95 篇 医学
  • 54 篇 经济学
    • 51 篇 应用经济学
  • 28 篇 农学
  • 21 篇 法学
  • 16 篇 教育学
  • 9 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 4,019 篇 optimization alg...
  • 268 篇 optimization
  • 191 篇 algorithms
  • 94 篇 machine learning
  • 87 篇 design
  • 65 篇 particle swarm o...
  • 55 篇 optimal control
  • 54 篇 genetic algorith...
  • 51 篇 convergence
  • 48 篇 genetic algorith...
  • 48 篇 objective functi...
  • 39 篇 optimal design
  • 38 篇 simulation
  • 37 篇 converge
  • 37 篇 artificial intel...
  • 34 篇 evolutionary alg...
  • 33 篇 predictive contr...
  • 33 篇 heuristic algori...
  • 32 篇 optimisation
  • 30 篇 deep learning

机构

  • 12 篇 duy tan univ ins...
  • 10 篇 national key lab...
  • 8 篇 amman arab univ ...
  • 7 篇 stanford univers...
  • 7 篇 univ technol syd...
  • 6 篇 georgia inst tec...
  • 6 篇 department of co...
  • 6 篇 google research ...
  • 6 篇 school of artifi...
  • 6 篇 semnan univ dept...
  • 5 篇 politecn milan d...
  • 5 篇 tu wien austria
  • 5 篇 ain shams univ f...
  • 5 篇 google deepmind ...
  • 5 篇 school of data s...
  • 5 篇 school of comput...
  • 5 篇 university of mi...
  • 5 篇 ton duc thang un...
  • 4 篇 college of compu...
  • 4 篇 semnan univ fac ...

作者

  • 12 篇 abualigah laith
  • 11 篇 ehteram mohammad
  • 9 篇 gandomi amir h.
  • 9 篇 hasanipanah mahd...
  • 9 篇 notarstefano giu...
  • 9 篇 ishibuchi hisao
  • 8 篇 zhan zhi-hui
  • 8 篇 zhang jun
  • 7 篇 neumann frank
  • 7 篇 rashid tarik a.
  • 7 篇 ahmed ali najah
  • 7 篇 hasanien hany m.
  • 7 篇 quirynen rien
  • 7 篇 pan jeng-shyang
  • 7 篇 zhang lijun
  • 6 篇 sundaram shreyas
  • 6 篇 neumann aneta
  • 6 篇 wang lei
  • 6 篇 zhang lei
  • 6 篇 yang shengxiang

语言

  • 3,513 篇 英文
  • 451 篇 其他
  • 52 篇 中文
  • 5 篇 土耳其文
  • 4 篇 法文
  • 4 篇 斯洛文尼亚文
  • 3 篇 德文
  • 1 篇 西班牙文
  • 1 篇 塞尔维亚文
检索条件"主题词=Optimization algorithms"
4019 条 记 录,以下是391-400 订阅
排序:
AN INTERIOR-POINT ALGORITHM FOR LINEAR optimization BASED ON A NEW ALGEBRAICALLY EQUIVALENT TRANSFORMATION
Applied Set-Valued Analysis and Optimization
收藏 引用
Applied Set-Valued Analysis and optimization 2025年 第1期7卷 111-124页
作者: Anane, Nassima Khaldi, Merzaka Achache, Mohamed Fundamental and Numerical Mathematics Laboratory Ferhat Abbas University Sétif Algeria
In this paper, we presented a full-Newton short-step interior-point algorithm, which is based on a new algebraically equivalent transformation technique, for a linear optimization problem. This technique offers a new ... 详细信息
来源: 评论
Accelerated Successive Convex Approximation for Nonlinear optimization-Based Control
收藏 引用
IEEE Transactions on Automatic Control 2025年
作者: Wu, Jinxian Dai, Li Dou, Songshi Xia, Yuanqing Beijing Institute of Technology School of Automation Beijing100081 China The University of Hong Kong Department of Electrical and Electronic Engineering Hong Kong
The successive convex approximation (SCA) methods stand out as the viable option for nonlinear optimization-based control, as it effectively addresses the challenges posed by nonlinear (potentially non-convex) optimiz... 详细信息
来源: 评论
A Landscape-Aware Differential Evolution for Multimodal optimization Problems
收藏 引用
IEEE Transactions on Evolutionary Computation 2025年
作者: Lin, Guo-Yun Chen, Zong-Gan Liu, Chuanbin Jiang, Yuncheng Kwong, Sam Zhang, Jun Zhan, Zhi-Hui South China Normal University School of Computer Science Guangzhou510631 China Ministry of Education Center for Scientific Research and Development in Higher Education Institutes China Lingnan University Department of Computing and Decision Science Hong Kong Nankai University College of Artificial Intelligence Tianjin300350 China ERICA Hanyang University 15588 Korea Republic of
How to simultaneously locate multiple global peaks and achieve certain accuracy on the found peaks are two key challenges in solving multimodal optimization problems (MMOPs). In this article, a landscape-aware differe... 详细信息
来源: 评论
Multi Objective optimization System for Bridge Design Based on Multi-objective optimization Theory and Improved Ant Colony Algorithm
Informatica (Slovenia)
收藏 引用
Informatica (Slovenia) 2025年 第8期49卷 127-140页
作者: Wen, Qiqi Chongqing Leway Civil Engineering Design Co. Ltd China
In the field of bridge design, multi-objective optimization problems have attracted much attention due to their complexity and multiple solutions. The limitations of existing optimization algorithms in dealing with mu... 详细信息
来源: 评论
A Stochastic Gradient Tracking Algorithm for Decentralized optimization With Inexact Communication
收藏 引用
IEEE Transactions on Automatic Control 2025年
作者: Shah, Suhail M. Bollapragada, Raghu University of Texas at Austin Operations Research and Industrial Engineering Program TX78705 United States
Decentralized optimization is typically studied under the assumption of noise-free transmission. However, real-world scenarios often involve the presence of noise due to factors such as additive white Gaussian noise c... 详细信息
来源: 评论
ADMM-Tracking Gradient for Distributed optimization over Asynchronous and Unreliable Networks
收藏 引用
IEEE Transactions on Automatic Control 2025年
作者: Carnevale, Guido Bastianello, Nicola Notarstefano, Giuseppe Carli, Ruggero Alma Mater Studiorum - Universita' di Bologna Department of Electrical Electronic and Information Engineering Bologna Italy Kth Royal Institute of Technology School of Electrical Engineering and Computer Science and Digital Futures Stockholm Sweden University of Padova Department of Information Engineering Via G. Gradenigo 6/B Padova35131 Italy
In this paper, we propose a novel distributed algorithm for consensus optimization over networks and a robust extension tailored to deal with asynchronous agents and packet losses. Indeed, to robustly achieve dynamic ... 详细信息
来源: 评论
Distributed Event-Triggered Bandit Convex optimization With Time-Varying Constraints
收藏 引用
IEEE Transactions on Control of Network Systems 2025年
作者: Zhang, Kunpeng Yi, Xinlei Wen, Guanghui Cao, Ming Johansson, Karl H. Chai, Tianyou Yang, Tao Northeastern University State Key Laboratory of Synthetical Automation for Process Industries Shenyang110819 China Ministry of Education Shanghai Institute of Intelligent Science and Technology National Key Laboratory of Autonomous Intelligent Unmanned Systems Frontiers Science Center for Intelligent Autonomous Systems Shanghai201210 China Southeast University School of Automation Nanjing210096 China University of Groningen Engineering and Technology Institute Groningen Faculty of Science and Engineering GroningenAG 9747 Netherlands KTH Royal Institute of Technology Division of Decision and Control Systems School of Electrical Engineering and Computer Science Stockholm10044 Sweden KTH Royal Institute of Technology Digital Futures Stockholm10044 Sweden
This paper considers the distributed bandit convex optimization problem with time-varying inequality constraints over a network of agents, where the goal is to minimize network regret and cumulative constraint violati... 详细信息
来源: 评论
Technical Note—Improved Sample-Complexity Bounds in Stochastic optimization
收藏 引用
Operations Research 2025年 第2期73卷 986-994页
作者: Baveja, Alok Chavan, Amit Nikiforov, Andrei Srinivasan, Aravind Xu, Pan Department of Supply Chain Management Rutgers Business School Rutgers The State University of New Jersey PiscatawayNJ08854 United States Snowflake Inc. San MateoCA94402 United States School of Business Rutgers The State University of New Jersey CamdenNJ08102 United States Department of Computer Science University of Maryland College ParkMD20742 United States Department of Computer Science New Jersey Institute of Technology NewarkNJ07102 United States
Real-world network-optimization problems often involve uncertain parameters during the optimization phase. Stochastic optimization is a key approach introduced in the 1950s to address such uncertainty. This paper pres... 详细信息
来源: 评论
Coping With a Severely Changing Number of Objectives in Dynamic Multi-Objective optimization
收藏 引用
IEEE Transactions on Evolutionary Computation 2025年
作者: Ruan, Gan Hou, Zhanglu Yao, Xin Lingnan University School of Data Science Hong Kong Xiangtan University Hunan Engineering Research Center of Intelligent System Optimization and Security Hunan Province Xiangtan411105 China
In dynamic multi-objective optimization problems (DMOPs) where the number of objectives changes, the Pareto-optimal set (PS) manifold may expand or contract over time. Knowledge transfer has been utilized to solve DMO... 详细信息
来源: 评论
Setwise Coordinate Descent for Dual Asynchronous Decentralized optimization
收藏 引用
IEEE Transactions on Automatic Control 2025年
作者: Costantini, Marina Liakopoulos, Nikolaos Mertikopoulos, Panayotis Spyropoulos, Thrasyvoulos EURECOM Sophia Antipolis Nice06000 France Amazon Luxembourg City1255 Luxembourg Univ. Grenoble Alpes CNRS Inria Grenoble INP LIG Grenoble38000 France The Technical University of Crete EURECOM Chania73100 Greece
In decentralized optimization over networks, synchronizing the updates of all nodes incurs significant communication overhead. For this reason, much of the recent literature has focused on the analysis and design of a... 详细信息
来源: 评论