咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 deep neural netw...
  • 1 篇 wmmse algorithm
  • 1 篇 interference man...
  • 1 篇 optimization alg...

机构

  • 1 篇 univ minnesota d...
  • 1 篇 univ virginia de...
  • 1 篇 tongji univ sch ...
  • 1 篇 oregon state uni...

作者

  • 1 篇 shi qingjiang
  • 1 篇 sun haoran
  • 1 篇 chen xiangyi
  • 1 篇 hong mingyi
  • 1 篇 fu xiao
  • 1 篇 sidiropoulos nic...

语言

  • 1 篇 英文
检索条件"主题词=Optimization algorithms approximation"
1 条 记 录,以下是1-10 订阅
排序:
Learning to Optimize: Training Deep Neural Networks for Interference Management
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2018年 第20期66卷 5438-5453页
作者: Sun, Haoran Chen, Xiangyi Shi, Qingjiang Hong, Mingyi Fu, Xiao Sidiropoulos, Nicholas D. Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA Tongji Univ Sch Software Engn Shanghai Peoples R China Oregon State Univ Sch Elect Engn & Comp Sci Corvallis OR 97331 USA Univ Virginia Dept Elect & Comp Engn Charlottesville VA 22904 USA
Numerical optimization has played a central role in addressing key signal processing (SP) problems. Highly effective methods have been developed for a large variety of SP applications such as communications, radar, fi... 详细信息
来源: 评论