optimization problems on complete graphs with edge weights drawn independently, from a fixed distribution, are considered. Several methods for analyzing these problems are discussed, including greedy methods, applicat...
详细信息
optimization problems on complete graphs with edge weights drawn independently, from a fixed distribution, are considered. Several methods for analyzing these problems are discussed, including greedy methods, applications of Boole’s inequality, and exploitation of relationships with results about random unweighted graphs. These techniques are illustrated in the case in which the edge weights are drawn from a normal distribution; in particular, we investigate the expected behavior of the minimum weight clique on k vertices. We describe the asymptotic behavior (in probability and/or almost surely) of the random variable which describes the optimum; we also discuss the asymptotic behavior of its mean. Finally techniques are demonstrated by which we may determine an asymptotic description of the behavior of a greedy algorithm for this problem.
In this paper, we focus on the optimization problems for a consecutive-k-out-of-n:G system with exchangeable components. A consecutive-k-out-of-n:G system consists of n components which are arranged in a line and the ...
详细信息
ISBN:
(纸本)9781728171029
In this paper, we focus on the optimization problems for a consecutive-k-out-of-n:G system with exchangeable components. A consecutive-k-out-of-n:G system consists of n components which are arranged in a line and the system works if and only if at least k consecutive components work. We first obtain the reliability and the number of failed components when system is working or fails. Then, we propose two optimization problems for this system, including the optimal number of components at system design stage, and the optimal replacement time at system operation stage.
This paper deals with the convergence of discrete approximations to the optimization problem (P) for a neutral functional-differential inclusion subject to general endpoint constraints. In the first part of the paper,...
详细信息
This paper deals with the convergence of discrete approximations to the optimization problem (P) for a neutral functional-differential inclusion subject to general endpoint constraints. In the first part of the paper, discrete approximations to the neutral functional-differential inclusion are constructed using Enter finite difference methods and the convergence of discrete approximations is proved. In the second part of the paper, a family of discrete optimization problems (P-N) to (P) is provided and the strong convergence of optimal solutions for (P-N) to the optimal solution of (P) is discussed. (c) 2004 Elsevier Inc. All rights reserved.
In this paper, we study the number of failed components in a consecutive-k-out-of-n:G system. The distributions and expected values of the number of failed components when system is failed or working at a particular t...
详细信息
In this paper, we study the number of failed components in a consecutive-k-out-of-n:G system. The distributions and expected values of the number of failed components when system is failed or working at a particular time t are evaluated. We also apply them to the optimization problems concerned with the optimal number of components and the optimal replacement time. Finally, we present the illustrative examples for the expected number of failed components and give the numerical results for the optimization problems.
In this paper we study optimization problems with variational inequality constraints in mine finite dimensional spaces. Kuhn-Tucker type necessary optimality conditions involving coderivatives are given under certain ...
详细信息
In this paper we study optimization problems with variational inequality constraints in mine finite dimensional spaces. Kuhn-Tucker type necessary optimality conditions involving coderivatives are given under certain constraint qualifications including one that ensures nonexistence of nontrivial abnormal multipliers. The result is applied to bilevel programming problems to obtain Kuhn-Tucker type necessary optimality conditions. The Kuhn-Tucker type necessary optimality conditions are shown to be satisfied without any constraint qualification by the class of bilevel programming problems where the lower level is a parametric linear quadratic problem.
In this paper, we introduce a new general iterative method for finding a common element of the set of solutions of a mixed equilibrium problem (MEP), the set of fixed points of an infinite family of nonexpansive mappi...
详细信息
In this paper, we introduce a new general iterative method for finding a common element of the set of solutions of a mixed equilibrium problem (MEP), the set of fixed points of an infinite family of nonexpansive mappings {T(n)}(n=1)(infinity) and the set of solutions of variational inequalities for a xi-inverse-strongly monotone mapping in Hilbert spaces. Furthermore, we establish the strong convergence theorem for the iterative sequence generated by the proposed iterative algorithm under some suitable conditions, which solves some optimization problems. Our results extend and improve the recent results of Yao et al. [Y. Yao, M. A. Noor, S. Zainab, Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl. 354 (2009) 319-329;Y. Yao, M. A. Noor, Y. C. Liou, On iterative methods for equilibrium problems, Nonlinear Anal. 70 (1) (2009) 479-509] and many others. (C) 2010 Elsevier Ltd. All rights reserved.
Solving larger-sized problems is an important area of research in quantum computing. Designing hybrid quantum-classical algorithms is a promising approach to solving this. We discuss decomposition-based hybrid approac...
详细信息
Solving larger-sized problems is an important area of research in quantum computing. Designing hybrid quantum-classical algorithms is a promising approach to solving this. We discuss decomposition-based hybrid approaches for solving optimization problems and demonstrate them for applications related to community detection.
To improve the optimization efficiency for different optimization problems and take advantage of the dynamic membrane computing framework, this paper proposes an improved bat algorithm, namely, Dynamic Membrane-driven...
详细信息
To improve the optimization efficiency for different optimization problems and take advantage of the dynamic membrane computing framework, this paper proposes an improved bat algorithm, namely, Dynamic Membrane-driven Bat Algorithm (DMBA). The dynamic construction of the DMBA algorithm aims at enhancing population diversity by balancing the exploration-exploitation tradeoff. Unlike the static membrane algorithms, the membranes in DMBA will be dynamically evolved by using merging and separation rules which help in maintaining the diversity of the population. The experimental results on a set of well-known benchmark functions including CEC 2005, CEC 2011, and CEC 2017 clearly prove the effectiveness of the proposed DMBA algorithm in terms of maintaining the diversity and exploitation capabilities compared to that of the others. It is shown that the proposed DMBA algorithm is superior to recent variants of the bat algorithm and other well-known algorithms in terms of solution accuracy and convergence speed.
In this paper, linear fractional multi-objective optimization problems subject to a system of fuzzy relational equations (FREs) using the max-Archimedean triangular norm composition are considered. First, some theorem...
详细信息
In this paper, linear fractional multi-objective optimization problems subject to a system of fuzzy relational equations (FREs) using the max-Archimedean triangular norm composition are considered. First, some theorems and results are presented to simplify systems of fuzzy relational equations. Next, the feasible set of the optimization problem is reduced. Then, the linear fractional multi-objective optimization problem is converted to a linear one using Nykowski and Zolkiewski's approach. Furthermore, the efficient solutions are obtained by applying the improved c-constraint method. In addition, we design an algorithm to generate consistent systems of fuzzy relational equations, randomly, using the covering problem. Finally, the proposed method is effectively tested by solving a randomly generated consistent test problem. (C) 2014 Published by Elsevier Inc.
Firefly Algorithm (FA) is one of the most recently introduced stochastic, nature-inspired, meta-heuristic approaches used for solving optimization problems. The conventional FA use randomization factor during generati...
详细信息
Firefly Algorithm (FA) is one of the most recently introduced stochastic, nature-inspired, meta-heuristic approaches used for solving optimization problems. The conventional FA use randomization factor during generation of solution search space and fireflies position changing, which results in imbalanced relationship between exploration and exploitation. This imbalanced relationship causes in incapability of FA to find the most optimum values at termination stage. In the proposed model, this issue has been resolved by incorporating PS at the termination stage of standard FA. The optimized values obtained from the FA are set as the initial starting points for the PS algorithm and the values are further optimized by PS to get the most optimal values or at least better values than the values obtained by conventional FA during its maximum number of iterations. The performance of the newly developed FA-PS model has been tested on eight minimization functions and six maximization functions by considering various performance evaluation parameters. The results obtained have been compared with other optimization algorithms namely genetic algorithm (GA), standard FA, artificial bee colony (ABC), ant colony optimization (ACO), differential equations (DE), bat algorithm (BA), grey wolf optimization (GWO), Self-Adaptive Step Firefly Algorithm (SASFA), and FA-Cross algorithm in terms of convergence rate and various numerical performance evaluation parameters. A significant improvement has been observed in the solution quality by embedding PS in the standard FA at the termination stage. The result behind this improvement is the better exploration and exploitation of the solution search space at this stage.
暂无评论