咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 online data stre...
  • 1 篇 action recogniti...
  • 1 篇 machine learning
  • 1 篇 non-stationary e...
  • 1 篇 big data process...
  • 1 篇 optimized deep a...
  • 1 篇 convolutional ne...

机构

  • 1 篇 sejong univ digi...
  • 1 篇 sejong univ dept...

作者

  • 1 篇 ul haq ijaz
  • 1 篇 ullah amin
  • 1 篇 muhammad khan
  • 1 篇 baik sung wook

语言

  • 1 篇 英文
检索条件"主题词=Optimized deep autoencoder"
1 条 记 录,以下是1-10 订阅
排序:
Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2019年 96卷 386-397页
作者: Ullah, Amin Muhammad, Khan Ul Haq, Ijaz Baik, Sung Wook Sejong Univ Digital Contents Res Inst Intelligent Media Lab Seoul South Korea Sejong Univ Dept Software Seoul South Korea
Action recognition is a challenging research area in which several convolutional neural networks (CNN) based action recognition methods are recently presented. However, such methods are inefficient for real-time onlin... 详细信息
来源: 评论