咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 27 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 16 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
  • 18 篇 理学
    • 18 篇 数学
    • 1 篇 统计学(可授理学、...
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...

主题

  • 27 篇 oracle complexit...
  • 6 篇 convex optimizat...
  • 3 篇 smoothing
  • 3 篇 nonconvex optimi...
  • 2 篇 iterative refine...
  • 2 篇 rational arithme...
  • 2 篇 extended-precisi...
  • 2 篇 variance reducti...
  • 2 篇 linear programmi...
  • 2 篇 exact solutions
  • 2 篇 optimization the...
  • 2 篇 symbolic computa...
  • 2 篇 zeroth-order opt...
  • 2 篇 nonconvex nonsmo...
  • 2 篇 diophantine appr...
  • 2 篇 stationary point
  • 2 篇 information-base...
  • 2 篇 stochastic optim...
  • 1 篇 non-convex optim...
  • 1 篇 computational le...

机构

  • 4 篇 mit cambridge ma...
  • 2 篇 weizmann inst sc...
  • 2 篇 konrad zuse zent...
  • 1 篇 oakland univ mat...
  • 1 篇 univ n carolina ...
  • 1 篇 univ wisconsin m...
  • 1 篇 georgia inst tec...
  • 1 篇 purdue univ sch ...
  • 1 篇 psl res univ cnr...
  • 1 篇 ibm res thomas j...
  • 1 篇 riken ctr adv in...
  • 1 篇 pontificia univ ...
  • 1 篇 mit lab informat...
  • 1 篇 weizmann inst sc...
  • 1 篇 univ waterloo de...
  • 1 篇 univ calif davis...
  • 1 篇 natl inst res di...
  • 1 篇 univ toronto dep...
  • 1 篇 chongqing normal...
  • 1 篇 microsoft res re...

作者

  • 4 篇 shamir ohad
  • 3 篇 balasubramanian ...
  • 2 篇 bubeck sebastien
  • 2 篇 kornowski guy
  • 2 篇 steffy daniel e.
  • 2 篇 gleixner ambros
  • 1 篇 jiang qijia
  • 1 篇 foster dylan j.
  • 1 篇 shiff ron
  • 1 篇 tran-dinh quoc
  • 1 篇 razaviyayn meisa...
  • 1 篇 ravikumar pradee...
  • 1 篇 xiao tesi
  • 1 篇 alacaoglu ahmet
  • 1 篇 smith adam
  • 1 篇 wang zhaoxin
  • 1 篇 upadhyay jalaj
  • 1 篇 shah devavrat
  • 1 篇 sridharan karthi...
  • 1 篇 rakhlin alexande...

语言

  • 26 篇 英文
  • 1 篇 其他
检索条件"主题词=Oracle complexity"
27 条 记 录,以下是11-20 订阅
排序:
Stochastic Gauss-Newton algorithm with STORM estimators for nonconvex composite optimization
收藏 引用
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING 2022年 第6期68卷 4621-4643页
作者: Wang, Zhaoxin Wen, Bo Hebei Univ Technol Sch Sci Tianjin Peoples R China Hebei Univ Technol Inst Math Tianjin Peoples R China
In this paper, we propose a new variant of stochastic Gauss-Newton algorithm to solve a broad class of nonconvex composite optimization problems by using stochastic recursive momentum estimators. We first show that th... 详细信息
来源: 评论
A Newton Frank-Wolfe method for constrained self-concordant minimization
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2022年 第2期83卷 273-299页
作者: Liu, Deyi Cevher, Volkan Tran-Dinh, Quoc Univ N Carolina Dept Stat & Operat Res 318 Hanes Hall Chapel Hill NC 27599 USA Ecole Polytech Fed Lausanne Lab Informat & Inference Syst Lausanne Switzerland
We develop a new Newton Frank-Wolfe algorithm to solve a class of constrained self-concordant minimization problems using linear minimization oracles (LMO). Unlike L-smooth convex functions, where the Lipschitz contin... 详细信息
来源: 评论
On the complexity of finding stationary points of smooth functions in one dimension  34
On the complexity of finding stationary points of smooth fun...
收藏 引用
34th International Conference on Algorithmic Learning Theory (ALT)
作者: Chewi, Sinho Bubeck, Sebastien Salim, Adil MIT Cambridge MA 02139 USA Microsoft Res Redmond WA USA
We characterize the query complexity of finding stationary points of one-dimensional non-convex but smooth functions. We consider four settings, based on whether the algorithms under consideration are deterministic or... 详细信息
来源: 评论
Deterministic Nonsmooth Nonconvex Optimization  36
Deterministic Nonsmooth Nonconvex Optimization
收藏 引用
36th Annual Conference on Learning Theory (COLT)
作者: Jordan, Michael I. Kornowski, Guy Lin, Tianyi Shamir, Ohad Zampetakis, Manolis Univ Calif Berkeley Berkeley CA 94720 USA Weizmann Inst Sci Rehovot Israel
We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing (delta, epsilon)-Goldstein stationary points. Several recent works have presented randomized algorithms that produce such poin... 详细信息
来源: 评论
Improved complexities for stochastic conditional gradient methods under interpolation-like conditions
收藏 引用
OPERATIONS RESEARCH LETTERS 2022年 第2期50卷 184-189页
作者: Xiao, Tesi Balasubramanian, Krishnakumar Ghadimi, Saeed Univ Calif Davis Dept Stat One Shields Ave Davis CA 95616 USA Univ Waterloo Dept Management Sci Waterloo ON Canada
We analyze stochastic conditional gradient methods for constrained optimization problems arising in over-parametrized machine learning. We show that one could leverage the interpolation-like conditions satisfied by su... 详细信息
来源: 评论
Mirror Descent Strikes Again: Optimal Stochastic Convex Optimization under Infinite Noise Variance  35
Mirror Descent Strikes Again: Optimal Stochastic Convex Opti...
收藏 引用
35th Conference on Learning Theory (COLT)
作者: Vural, Nuri Mert Yu, Lu Balasubramanian, Krishnakumar Volgushev, Stanislav Erdogdu, Murat A. Univ Toronto Dept Comp Sci Toronto ON Canada Vector Inst Toronto ON Canada Univ Toronto Dept Stat Sci Toronto ON Canada Univ Calif Davis Dept Stat Davis CA 95616 USA
We study stochastic convex optimization under infinite noise variance. Specifically, when the stochastic gradient is unbiased and has uniformly bounded (1+ k)-th moment, for some k is an element of (0;1], we quantify ... 详细信息
来源: 评论
Smooth Online Learning is as Easy as Statistical Learning  35
Smooth Online Learning is as Easy as Statistical Learning
收藏 引用
35th Conference on Learning Theory (COLT)
作者: Block, Adam Dagan, Yuval Golowich, Noah Rakhlin, Alexander MIT Cambridge MA 02139 USA
Much of modern learning theory has been split between two regimes: the classical offline setting, where data arrive independently, and the online setting, where data arrive adversarially. While the former model is oft... 详细信息
来源: 评论
Stochastic Variance Reduction for Variational Inequality Methods  35
Stochastic Variance Reduction for Variational Inequality Met...
收藏 引用
35th Conference on Learning Theory (COLT)
作者: Alacaoglu, Ahmet Malitsky, Yura Univ Wisconsin Madison WI 53706 USA Linkoping Univ Linkoping Sweden
We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extra-gradient, forward-backward... 详细信息
来源: 评论
Linear programming using limited-precision oracles
收藏 引用
MATHEMATICAL PROGRAMMING 2020年 第1-2期183卷 525-554页
作者: Gleixner, Ambros Steffy, Daniel E. Konrad Zuse Zentrum Informat Tech Berlin Takustr 7 D-14195 Berlin Germany Oakland Univ Math & Stat Rochester MI 48309 USA
Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that ... 详细信息
来源: 评论
An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2019年 第3期183卷 1053-1076页
作者: Zhang, Xiao-Juan Du, Xue-Wu Yang, Zhen-Ping Lin, Gui-Hua Chongqing Univ Posts & Telecommun Coll Mobile Telecommun Chongqing 400065 Peoples R China Chongqing Normal Univ Coll Math Sci Chongqing 401131 Peoples R China Shanghai Univ Sch Management Shanghai 200444 Peoples R China
In this paper, we consider a stochastic variational inequality, in which the mapping involved is an expectation of a given random function. Inspired by the work of He (Appl Math Optim 35:69-76, 1997) and the extragrad... 详细信息
来源: 评论