This paper presents a comparative study of three of the emerging frequency domain convolutive blind source separation (FDCBSS) techniques i.e. convolutive blind separation of non-stationary sources due to Parra and Sp...
详细信息
ISBN:
(纸本)9781424422401
This paper presents a comparative study of three of the emerging frequency domain convolutive blind source separation (FDCBSS) techniques i.e. convolutive blind separation of non-stationary sources due to Parra and Spence, penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources due to Wang et al. and a geometrically constrained multimodal approach for convolutive blind source separation due to Sanei et al. Objective evaluation is performed on the basis of signal to interference ratio (SIR), performance index (PI) and solution to the permutation problem. The results confirm that a multimodal approach is necessary to properly mitigate the permutation in BSS and ultimately to solve the cocktail party problem. In other words, it is to make BSS semiblind by exploiting prior geometrical information, and thereby providing the framework to find robust solutions for more challenging source separation with moving speakers.
This paper presents a comparative study of three of the emerging frequency domain convolutive blind source separation (FDCBSS) techniques i.e. convolutive blind separation of non-stationary sources due to Parra and Sp...
详细信息
This paper presents a comparative study of three of the emerging frequency domain convolutive blind source separation (FDCBSS) techniques i.e. convolutive blind separation of non-stationary sources due to Parra and Spence, penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources due to Wang et al. and a geometrically constrained multimodal approach for convolutive blind source separation due to Sanei et al. Objective evaluation is performed on the basis of signal to interference ratio (SIR), performance index (PI) and solution to the permutation problem. The results confirm that a multimodal approach is necessary to properly mitigate the permutation in BSS and ultimately to solve the cocktail party problem. In other words, it is to make BSS semiblind by exploiting prior geometrical information, and thereby providing the framework to find robust solutions for more challenging source separation with moving speakers.
A new approach for convolutive blind source separation (BSS) by explicitly exploiting the second-order nonstationarity of signals and operating in the frequency domain is proposed. The algorithm accommodates a penalty...
详细信息
A new approach for convolutive blind source separation (BSS) by explicitly exploiting the second-order nonstationarity of signals and operating in the frequency domain is proposed. The algorithm accommodates a penalty function within the cross-power spectrum-based cost function and thereby converts the separation problem into a joint diagonalization problem with unconstrained optimization. This leads to a new member of the family of joint diagonalization criteria and a modification of the search direction of the gradient-based descent algorithm. Using this approach, not only can the degenerate solution induced by a null unmixing matrix and the effect of large errors within the elements of covariance matrices at low-frequency bins be automatically removed, but in addition, a unifying view to joint diagonalization with unitary or nonunitary constraint is provided. Numerical experiments are presented to verify the performance of the new method, which show that a suitable penalty function may lead the algorithm to a faster convergence and a better performance for the separation of convolved speech signals, in particular, in terms of shape preservation and amplitude ambiguity reduction, as compared with the conventional second-order based algorithms for convolutive mixtures that exploit signal nonstationarity.
暂无评论