咨询与建议

限定检索结果

文献类型

  • 48 篇 期刊文献
  • 17 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 67 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 39 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 10 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 生物医学工程(可授...
  • 17 篇 理学
    • 5 篇 数学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 3 篇 物理学
    • 2 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 地理学
    • 1 篇 生态学
  • 9 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 农林经济管理
  • 3 篇 经济学
    • 2 篇 理论经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学

主题

  • 67 篇 over-parameteriz...
  • 6 篇 parameter estima...
  • 5 篇 deep learning
  • 4 篇 non-convex optim...
  • 3 篇 generalization
  • 3 篇 iterative identi...
  • 3 篇 neural networks
  • 3 篇 optimization
  • 3 篇 stochastic gradi...
  • 3 篇 gradient descent
  • 3 篇 implicit regular...
  • 3 篇 hierarchical ide...
  • 2 篇 algorithmic stab...
  • 2 篇 neural tangent k...
  • 2 篇 nonsmooth optimi...
  • 2 篇 deep neural netw...
  • 2 篇 convolution
  • 2 篇 linear dynamical...
  • 2 篇 generalization b...
  • 2 篇 sub-gradient met...

机构

  • 4 篇 qingdao univ sci...
  • 3 篇 jiangnan univ sc...
  • 2 篇 natl univ def te...
  • 2 篇 north carolina s...
  • 2 篇 univ genoa via o...
  • 2 篇 army engn univ p...
  • 2 篇 acad mil sci ctr...
  • 1 篇 sun yat sen univ...
  • 1 篇 princeton univ d...
  • 1 篇 aristotle univ t...
  • 1 篇 cent china norma...
  • 1 篇 montana state un...
  • 1 篇 baidu inc people...
  • 1 篇 peking univ peop...
  • 1 篇 univ so calif de...
  • 1 篇 univ michigan de...
  • 1 篇 brown univ sch e...
  • 1 篇 wisconsin instit...
  • 1 篇 vanderbilt univ ...
  • 1 篇 department of el...

作者

  • 6 篇 ding feng
  • 2 篇 anguita davide
  • 2 篇 pan zhisong
  • 2 篇 liu xin
  • 2 篇 kim jonghyuk
  • 2 篇 ji yan
  • 2 篇 tao wei
  • 2 篇 cheng jiantong
  • 2 篇 hayat tasawar
  • 2 篇 ma tengyu
  • 2 篇 oneto luca
  • 2 篇 zou difan
  • 1 篇 lee jeong jun
  • 1 篇 cao yuan
  • 1 篇 mackenzie todd a...
  • 1 篇 haochen jeff z.
  • 1 篇 donghi giovanni
  • 1 篇 jiacheng zhuo
  • 1 篇 jiang zhenyu
  • 1 篇 ma xiaoli

语言

  • 64 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Over-parameterization"
67 条 记 录,以下是11-20 订阅
排序:
On the influence of over-parameterization in manifold based surrogates and deep neural operators
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2023年 第1期479卷
作者: Kontolati, Katiana Goswami, Somdatta Shields, Michael D. Karniadakis, George Em Johns Hopkins Univ Dept Civil & Syst Engn Baltimore MD USA Brown Univ Div Appl Math Providence RI 02912 USA Brown Univ Sch Engn Providence RI USA
Constructing accurate and generalizable approximators (surrogate models) for complex physico-chemical processes exhibiting highly non-smooth dynamics is challenging. The main question is what type of surrogate models ... 详细信息
来源: 评论
Do we really need a new theory to understand over-parameterization?
收藏 引用
NEUROCOMPUTING 2023年 第1期543卷
作者: Oneto, Luca Ridella, Sandro Anguita, Davide Univ Genoa Via Opera Pia 11a I-16145 Genoa Italy
This century saw an unprecedented increase of public and private investments in Artificial Intelligence (AI) and especially in (Deep) Machine Learning (ML). This led to breakthroughs in their practical ability to solv... 详细信息
来源: 评论
Global convergence of sub-gradient method for robust matrix recovery: small initialization, noisy measurements, and over-parameterization
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 4434-4517页
作者: Jianhao Ma Salar Fattahi Department of Industrial and Operations Engineering University of Michigan Ann Arbor MI
In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with ℓ1-loss, where the goal is to recover a low-rank matrix from a li... 详细信息
来源: 评论
Deep phase retrieval: Analyzing over-parameterization in phase retrieval
收藏 引用
SIGNAL PROCESSING 2021年 180卷 107866-107866页
作者: Yu, Qi Huang, Jun-Jie Zhu, Jubo Dai, Wei Dragotti, Pier Luigi Natl Univ Def Technol Coll Liberal Arts & Sci Changsha Peoples R China Imperial Coll London Dept Elect & Elect Engn London England
Phase retrieval aims to recover the phase of a complex-valued signal from magnitude measurements. Recently, approaches based on non-convex optimization which solve the phase retrieval problem directly using gradient d... 详细信息
来源: 评论
Distributed optimization for degenerate loss functions arising from over-parameterization
收藏 引用
ARTIFICIAL INTELLIGENCE 2021年 301卷 103575-103575页
作者: Zhang, Chi Li, Qianxiao Inst High Performance Comp Singapore Singapore Natl Univ Singapore Singapore Singapore
We consider distributed optimization with degenerate loss functions, where the optimal sets of local loss functions have a non-empty intersection. This regime often arises in optimizing large-scale multi-agent AI syst... 详细信息
来源: 评论
Iterative Identification Algorithms for Bilinear-in-parameter Systems by Using the over-parameterization Model and the Decomposition
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2018年 第6期16卷 2634-2643页
作者: Chen, Mengting Ding, Feng Alsaedi, Ahmed Hayat, Tasawar Jiangnan Univ Minist Educ Sch Internet Things Engn Key Lab Adv Proc Control Light Ind Wuxi 214122 Peoples R China Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao 266061 Peoples R China King Abdulaziz Univ Fac Sci Dept Math NAAM Res Grp Jeddah Saudi Arabia Quaid I Azam Univ Dept Math Islamabad Pakistan
This paper focuses on the identification problem for a class of bilinear-in-parameter systems with an additive noise modeled by an autoregressive moving average process. By using the over-parameterization model, the s... 详细信息
来源: 评论
Generalization Performance of Empirical Risk Minimization on over-Parameterized Deep ReLU Nets
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2025年 第3期71卷 1978-1993页
作者: Lin, Shao-Bo Wang, Yao Zhou, Ding-Xuan Xi An Jiao Tong Univ Ctr Intelligent Decis Making & Machine Learning Sch Management Xian 710049 Peoples R China Univ Sydney Sch Math & Stat Sydney NSW 2006 Australia
In this paper, we study the generalization performance of global minima of empirical risk minimization (ERM) on over-parameterized deep ReLU nets. Using a novel deepening scheme for deep ReLU nets, we rigorously prove... 详细信息
来源: 评论
Iterative parameter estimation for a class of fractional-order Hammerstein nonlinear systems disturbed by colored noise
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING 2025年
作者: Wang, Junwei Ji, Yan Ding, Feng Jiangnan Univ Sch Internet Things Engn Key Lab Adv Proc Control Light Ind Minist Educ 1800 Lihu Lake Rd Wuxi 214122 Peoples R China Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao Peoples R China
Considering the existence of nonlinearity and fractional-order phenomena in practical environments, this paper investigates the parameter estimation methods for a class of fractional-order Hammerstein nonlinear system... 详细信息
来源: 评论
Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2024年 72卷 1910-1927页
作者: Li, Yicheng Sun, Xinghua Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 518107 Peoples R China
This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Usin... 详细信息
来源: 评论
Weighted neural tangent kernel: a generalized and improved network-induced kernel
收藏 引用
MACHINE LEARNING 2023年 第8期112卷 2871-2901页
作者: Tan, Lei Wu, Shutong Zhou, Wenxing Huang, Xiaolin Shanghai Jiao Tong Univ Dept Automat Shanghai Peoples R China
The neural tangent kernel (NTK) has recently attracted intense study, as it describes the evolution of an over-parameterized neural network (NN) trained by gradient descent. However, it is now well-known that gradient... 详细信息
来源: 评论