咨询与建议

限定检索结果

文献类型

  • 58 篇 期刊文献
  • 13 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 23 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 11 篇 控制科学与工程
    • 3 篇 水利工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
  • 40 篇 理学
    • 22 篇 数学
    • 13 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 5 篇 物理学
    • 3 篇 系统科学
    • 2 篇 地球物理学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 1 篇 理论经济学
  • 6 篇 医学
    • 5 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 6 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 农林经济管理
  • 2 篇 农学

主题

  • 75 篇 overparameteriza...
  • 7 篇 deep learning
  • 6 篇 generalization
  • 6 篇 neural networks
  • 5 篇 generalization e...
  • 5 篇 interpolation
  • 4 篇 convergence
  • 4 篇 implicit regular...
  • 3 篇 compressed sensi...
  • 3 篇 svm
  • 3 篇 optimization
  • 3 篇 min-norm interpo...
  • 3 篇 gradient descent
  • 3 篇 identification
  • 3 篇 gradient flow
  • 3 篇 sparsity
  • 2 篇 adaptive systems
  • 2 篇 nonlinear regres...
  • 2 篇 variational meth...
  • 2 篇 sensitivity anal...

机构

  • 2 篇 univ calif santa...
  • 2 篇 univ calif santa...
  • 2 篇 russian acad sci...
  • 2 篇 university of ca...
  • 1 篇 univ stuttgart i...
  • 1 篇 google res 367 e...
  • 1 篇 rice univ dept e...
  • 1 篇 mit dept math ca...
  • 1 篇 usaf human resou...
  • 1 篇 univ copenhagen ...
  • 1 篇 purdue univ dept...
  • 1 篇 univ british col...
  • 1 篇 king abdullah un...
  • 1 篇 univ amsterdam
  • 1 篇 seminar for stat...
  • 1 篇 yunnan univ dept...
  • 1 篇 univ wisconsin m...
  • 1 篇 univ washington ...
  • 1 篇 columbia univ de...
  • 1 篇 southern univ sc...

作者

  • 4 篇 thrampoulidis ch...
  • 3 篇 chou hung-hsu
  • 3 篇 rauhut holger
  • 2 篇 kammoun abla
  • 2 篇 deng zeyu
  • 2 篇 glushchenko a. i...
  • 2 篇 lastochkin konst...
  • 2 篇 glushchenko anto...
  • 2 篇 lastochkin k. a.
  • 2 篇 wang ke
  • 2 篇 ward rachel
  • 2 篇 steinwart ingo
  • 2 篇 belkin mikhail
  • 2 篇 kyrillidis anast...
  • 1 篇 congdon p
  • 1 篇 kageyama naoki
  • 1 篇 sugiyama mahito
  • 1 篇 chinot geoffrey
  • 1 篇 etesami s. rasou...
  • 1 篇 qu annie

语言

  • 73 篇 英文
  • 2 篇 其他
检索条件"主题词=Overparameterization"
75 条 记 录,以下是1-10 订阅
排序:
overparameterization of Deep ResNet: Zero Loss and Mean-field Analysis
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-65页
作者: Ding, Zhiyan Chen, Shi Li, Qin Wright, Stephen J. Univ Wisconsin Madison Dept Math Madison WI 53706 USA Univ Wisconsin Madison Dept Comp Sci Madison WI 53706 USA
Finding parameters in a deep neural network (NN) that fit training data is a nonconvex optimization problem, but a basic first-order optimization method (gradient descent) finds a global optimizer with perfect fit (ze... 详细信息
来源: 评论
overparameterization and Generalization Error: Weighted Trigonometric
收藏 引用
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE 2022年 第2期4卷 885-908页
作者: Xie, Yuege Chou, Hung-Hsu Rauhut, Holger Ward, Rachel Univ Texas Austin Oden Inst Austin TX 78712 USA Rhein Westfal TH Aachen Chair Math Informat Proc D-52056 Aachen N Rhine Westpha Germany Univ Texas Austin Math Dept Austin TX 78712 USA
Motivated by surprisingly good generalization properties of learned deep neural networks in overparameterized scenarios and by the related double descent phenomenon, this paper analyzes the relation between smoothness... 详细信息
来源: 评论
overparameterization in Neural Networks: From Application to Theory
Overparameterization in Neural Networks: From Application to...
收藏 引用
作者: Zhang, Kaiqi University of California Santa Barbara
学位级别:Ph.D., Doctor of Philosophy
Neural networks are rapidly increasing in size, leading to a common occurrence of overparameterization in deep learning. This presents challenges in both the theory and application of deep learning. From a theoretical... 详细信息
来源: 评论
DETECTION OF overparameterization AND OVERFITTING IN AN AUTOMATIC CALIBRATION OF SWAT
收藏 引用
TRANSACTIONS OF THE ASABE 2010年 第5期53卷 1487-1499页
作者: Whittaker, G. Confesor, R., Jr. Di Luzio, M. Arnold, J. G. USDA ARS Natl Forage Seed Prod Res Ctr Corvallis OR 97331 USA Heidelberg Univ Natl Ctr Water Qual Res Tiffin OH USA Texas A&M Univ Syst Blackland Res Ctr Temple TX USA USDA ARS Grassland Soil & Water Res Lab Temple TX 76502 USA
Distributed hydrologic models based on small-scale physical processes tend to have a large number of parameters to represent spatial heterogeneity. This characteristic requires the use of a large number of parameters ... 详细信息
来源: 评论
A Statistical Variable Selection Solution for RFM Ill-Posedness and overparameterization Problems
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2018年 第7期56卷 3990-4001页
作者: Moghaddam, Sayyed Hamed Alizadeh Mokhtarzade, Mehdi Naeini, Amin Alizadeh Amiri-Simkooei, AliReza Khajeh Nasir Toosi Univ Technol Fac Geodesy & Geomat Engn Tehran *** Iran Univ Isfahan Fac Civil Engn & Transportat Dept Geomat Engn Esfahan *** Iran
Parameters of a rational function model (RFM), known as rational polynomial coefficients, are commonly redundant and highly correlated, leading to the problems of overparameterization and ill-posedness, respectively. ... 详细信息
来源: 评论
Toward Moderate overparameterization: Global Convergence Guarantees for Training Shallow Neural Networks
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY
收藏 引用
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY 2020年 第1期1卷 84-105页
作者: Oymak, Samet Soltanolkotabi, Mahdi Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA Univ Southern Calif Ming Hsieh Dept Elect Engn Los Angeles CA 90089 USA
Many modern neural network architectures are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Sufficiently overparameterized neural network architecture... 详细信息
来源: 评论
More is less: inducing sparsity via overparameterization
收藏 引用
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA 2023年 第3期12卷 iaad012-iaad012页
作者: Chou, Hung-Hsu Maly, Johannes Rauhut, Holger Ludwig Maximilian Univ Munich Math Inst Theresienstr 39 D-80333 Munich Germany Rhein Westfal TH Aachen Chair Math Informat Proc Pontdriesch 12-14 D-52062 Aachen Germany
In deep learning, it is common to overparameterize neural networks, that is, to use more parameters than training samples. Quite surprisingly training the neural network via (stochastic) gradient descent leads to mode... 详细信息
来源: 评论
Investigating overparameterization for Non-Negative Matrix Factorization in Collaborative Filtering  21
Investigating Overparameterization for Non-Negative Matrix F...
收藏 引用
15th ACM Conference on Recommender Systems (RECSYS)
作者: Kawakami, Yuhi Sugiyama, Mahito Natl Inst Informat Tokyo Japan Grad Univ Adv Studies SOKENDAI Tokyo Japan
overparameterization is one of the key techniques in modern machine learning, where a model with the higher complexity can generalize better on test data against the common knowledge of the bias-variance trade-off in ... 详细信息
来源: 评论
overparameterization of deep ResNet: zero loss and mean-field analysis
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 2282-2346页
作者: Zhiyan Ding Shi Chen Qin Li Stephen J. Wright Mathematics Department University of Wisconsin-Madison Madison WI Department of Computer Sciences University of Wisconsin-Madison Madison WI
Finding parameters in a deep neural network (NN) that fit training data is a nonconvex optimization problem, but a basic first-order optimization method (gradient descent) finds a global optimizer with perfect fit (ze... 详细信息
来源: 评论
EM algorithm using overparameterization for the multivariate skew-normal distribution
收藏 引用
ECONOMETRICS AND STATISTICS 2021年 19卷 151-168页
作者: Abe, Toshihiro Fujisawa, Hironori Kawashima, Takayuki Ley, Christophe Hosei Univ Fac Econ 4342 Aihara Machida Tokyo 1940298 Japan Inst Stat Math 10-3 Midori Cho Tachikawa Tokyo 1908562 Japan Tokyo Inst Technol Dept Math & Comp Sci Meguro Ku 2-12-1 Ookayama Tokyo 1528550 Japan RIKEN Ctr Adv Intelligence Project Chuo Ku 1-4-1 Nihonbashi Tokyo 1030027 Japan Univ Ghent Dept Appl Math Comp Sci & Stat Krijgslaan 281S9Campus Sterre B-9000 Ghent Belgium
A stochastic representation with a latent variable often enables us to make an EM algorithm to obtain the maximum likelihood estimate. The skew-normal distribution has such a simple stochastic representation with a la... 详细信息
来源: 评论