咨询与建议

限定检索结果

文献类型

  • 36 篇 期刊文献
  • 14 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 24 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 5 篇 控制科学与工程
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 矿业工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
  • 15 篇 理学
    • 10 篇 数学
    • 7 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 1 篇 海洋科学
  • 14 篇 经济学
    • 9 篇 理论经济学
    • 5 篇 应用经济学
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 农林经济管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 医学技术(可授医学...
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 52 篇 pc algorithm
  • 10 篇 bayesian network...
  • 7 篇 directed acyclic...
  • 6 篇 bayesian network
  • 5 篇 structure learni...
  • 5 篇 directed acyclic...
  • 5 篇 graphical models
  • 4 篇 causal discovery
  • 4 篇 linear non-gauss...
  • 4 篇 causal inference
  • 3 篇 causality
  • 3 篇 vector error cor...
  • 3 篇 causal search
  • 3 篇 causal structure...
  • 3 篇 monetary policy
  • 3 篇 dag
  • 3 篇 svar
  • 3 篇 false discovery ...
  • 2 篇 parallel process...
  • 2 篇 parallelization

机构

  • 3 篇 north carolina s...
  • 2 篇 ucl div psychiat...
  • 2 篇 swiss fed inst t...
  • 2 篇 kharazmi univ fa...
  • 2 篇 chulalongkorn un...
  • 2 篇 univ potsdam ent...
  • 2 篇 univ basel dep m...
  • 1 篇 univ pittsburgh ...
  • 1 篇 ustc dept comp s...
  • 1 篇 liverpool john m...
  • 1 篇 south china univ...
  • 1 篇 hasso plattner i...
  • 1 篇 bialystok tech u...
  • 1 篇 old dominion uni...
  • 1 篇 oregon hlth & sc...
  • 1 篇 department of co...
  • 1 篇 carnegie mellon ...
  • 1 篇 常州市信息中心
  • 1 篇 univ pittsburgh ...
  • 1 篇 norwegian univ s...

作者

  • 4 篇 phiromswad piyac...
  • 4 篇 xu xiaojie
  • 4 篇 zhang yun
  • 4 篇 huegle johannes
  • 3 篇 salmeron antonio
  • 2 篇 madsen anders l.
  • 2 篇 nielsen thomas d...
  • 2 篇 giudice enrico
  • 2 篇 schmidt christop...
  • 2 篇 rafei meysam
  • 2 篇 langseth helge
  • 2 篇 uflacker matthia...
  • 2 篇 moffa giusi
  • 2 篇 kuipers jack
  • 2 篇 jensen frank
  • 2 篇 hagedorn christo...
  • 2 篇 esmaeili parisa
  • 1 篇 foraita ronja
  • 1 篇 thuc duy le
  • 1 篇 ning tigang

语言

  • 50 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=PC algorithm"
52 条 记 录,以下是1-10 订阅
排序:
A Fast pc algorithm for High Dimensional Causal Discovery with Multi-Core pcs
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019年 第5期16卷 1483-1495页
作者: Thuc Duy Le Hoang, Tao Li, Jiuyong Liu, Lin Liu, Huawen Hu, Shu Univ South Australia Sch Informat Technol & Math Sci Mawson Lakes SA 5095 Australia Zhejiang Normal Univ Dept Comp Sci Jinhua 321004 Zhejiang Peoples R China USTC Dept Comp Sci Hefei 230026 Anhui Peoples R China
Discovering causal relationships from observational data is a crucial problem and it has applications in many research areas. The pc algorithm is the state-of-the-art constraint based method for causal discovery. Howe... 详细信息
来源: 评论
Automated hyperparameter selection for the pc algorithm
收藏 引用
PATTERN RECOGNITION LETTERS 2021年 151卷 288-293页
作者: V. Strobl, Eric Davidson County Tennessee United States
The pc algorithm infers causal relations using conditional independence tests that require a pre-specified Type I alpha level. pc is however unsupervised, so we cannot tune alpha using traditional cross-validation. We... 详细信息
来源: 评论
cupc: CUDA-Based Parallel pc algorithm for Causal Structure Learning on GPU
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2020年 第3期31卷 530-542页
作者: Zarebavani, Behrooz Jafarinejad, Foad Hashemi, Matin Salehkaleybar, Saber Sharif Univ Technol Learning & Intelligent Syst Lab Dept Elect Engn Tehran *** Iran
The main goal in many fields in the empirical sciences is to discover causal relationships among a set of variables from observational data. pc algorithm is one of the promising solutions to learn underlying causal st... 详细信息
来源: 评论
Controlling the False Discovery Rate of the Association/Causality Structure Learned with the pc algorithm
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2009年 第2期10卷 475-514页
作者: Li, Junning Wang, Z. Jane Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada
In real world applications, graphical statistical models are not only a tool for operations such as classification or prediction, but usually the network structures of the models themselves are also of great interest ... 详细信息
来源: 评论
Estimating and Controlling the False Discovery Rate of the pc algorithm Using Edge-specific P-Values
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2019年 第5期10卷 1-37页
作者: Strobl, Eric, V Spirtes, Peter L. Visweswaran, Shyam Vanderbilt Univ Dept Psychiat & Behav Sci Med Ctr 1601 23rd Ave S Nashville TN 37212 USA Carnegie Mellon Univ Dept Philosophy 5000 Forbes Ave Baker Hall 161 Pittsburgh PA 15213 USA Univ Pittsburgh Dept Biomed Informat 5607 Baum Blvd Pittsburgh PA 15206 USA
Many causal discovery algorithms infer graphical structure from observational data. The pc algorithm in particular estimates a completed partially directed acyclic graph (CPDAG), or an acyclic graph containing directe... 详细信息
来源: 评论
Inferring functional connectivity in MRI using Bayesian network structure learning with a modified pc algorithm
收藏 引用
NEUROIMAGE 2013年 75卷 165-175页
作者: Iyer, Swathi P. Shafran, Izhak Grayson, David Gates, Kathleen Nigg, Joel T. Fair, Damien A. Oregon Hlth & Sci Univ Dept Behav Neurosci Portland OR 97239 USA Oregon Hlth & Sci Univ Dept Psychiat Portland OR 97239 USA Oregon Hlth & Sci Univ Adv Imaging Res Ctr Portland OR 97239 USA Oregon Hlth & Sci Univ Dept Biomed Engn Portland OR 97239 USA Univ Calif Davis Ctr Neurosci Davis CA 95616 USA Virginia Polytech Inst & State Univ Dept Psychol Blacksburg VA 24061 USA Virginia Polytech Inst & State Univ Arlington Innovat Ctr Blacksburg VA 24061 USA
Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determine... 详细信息
来源: 评论
The Dual pc algorithm for Structure Learning  11
The Dual PC Algorithm for Structure Learning
收藏 引用
International Conference on Probabilistic Graphical Models
作者: Giudice, Enrico Kuipers, Jack Moffa, Giusi Univ Basel Dep Math & Comp Sci Basel Switzerland Swiss Fed Inst Technol Dep Biosyst Sci & Engn Basel Switzerland UCL Div Psychiat London England
Learning the graphical structure of Bayesian networks is key to describing data generating mechanisms in many complex applications and it poses considerable computational challenges. Observational data can only identi... 详细信息
来源: 评论
Parallelisation of the pc algorithm  16th
Parallelisation of the PC Algorithm
收藏 引用
16th Conference of the Spanish-Association-for-Artificial-Intelligence (CAEPIA)
作者: Madsen, Anders L. Jensen, Frank Salmeron, Antonio Langseth, Helge Nielsen, Thomas D. HUGIN EXPERT AS Aalborg Denmark Aalborg Univ Dept Comp Sci Aalborg Denmark Univ Almeria Dept Math Almeria Spain Norwegian Univ Sci & Technol Dept Comp & Informat Sci N-7034 Trondheim Norway
This paper describes a parallel version of the pc algorithm for learning the structure of a Bayesian network from data. The pc algorithm is a constraint-based algorithm consisting of five steps where the first step is... 详细信息
来源: 评论
A Study on Causal Rule Discovery with pc algorithm
A Study on Causal Rule Discovery with PC Algorithm
收藏 引用
International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS)
作者: Rama, B. Praveen, P. Sinha, Harshit Choudhury, Tanupriya Kakatiya Univ Univ Coll Dept Comp Sci Warangal Telangana India Amity Univ Comp Sci & Engn Noida India
Guarantee of the mining of the data of extricating unforeseen information from unpleasantly huge databases. Ways are created to make link comments since gigantic data sets. These demonstrate the quality of relationshi... 详细信息
来源: 评论
On Using the pc algorithm for Learning Continuous Bayesian Networks: An Experimental Analysis
On Using the PC Algorithm for Learning Continuous Bayesian N...
收藏 引用
15th Conference of the Spanish-Association-for-Artificial-Intelligence (CAEPIA)
作者: Fernandez, Antonio Perez-Bernabe, Inmaculada Salmeron, Antonio Univ Almeria Dept Math E-04120 Almeria Spain
Mixtures of truncated basis functions (MoTBFs) have been recently proposed as a generalisation of mixtures of truncated exponentials and mixtures of polynomials for modelling conditional distributions in hybrid Bayesi... 详细信息
来源: 评论