咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 10 篇 计算机科学与技术...
    • 4 篇 控制科学与工程
    • 2 篇 电气工程
    • 1 篇 生物医学工程(可授...
  • 11 篇 理学
    • 8 篇 数学
    • 7 篇 统计学(可授理学、...
    • 3 篇 生物学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 公共管理
    • 1 篇 工商管理
  • 4 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 医学技术(可授医学...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 农学

主题

  • 23 篇 pc-algorithm
  • 5 篇 directed acyclic...
  • 3 篇 observational da...
  • 3 篇 dag
  • 3 篇 directed acyclic...
  • 3 篇 causal inference
  • 3 篇 high-dimensional...
  • 2 篇 ccd-algorithm
  • 2 篇 order-dependence
  • 2 篇 normalized addit...
  • 2 篇 functional conne...
  • 2 篇 graphical modeli...
  • 2 篇 global markov pr...
  • 2 篇 additive conditi...
  • 2 篇 fci-algorithm
  • 2 篇 skeleton
  • 2 篇 additive reprodu...
  • 2 篇 neural network
  • 2 篇 partial correlat...
  • 2 篇 consistency

机构

  • 5 篇 eth seminar stat...
  • 2 篇 univ bremen fac ...
  • 2 篇 hong kong polyte...
  • 1 篇 univ paris sud f...
  • 1 篇 univ london impe...
  • 1 篇 samsi res triang...
  • 1 篇 inserm us23 f-94...
  • 1 篇 univ gothenburg ...
  • 1 篇 google llc ny
  • 1 篇 google llc 111 8...
  • 1 篇 gustave roussy l...
  • 1 篇 univ pavia dept ...
  • 1 篇 univ cambridge e...
  • 1 篇 department of st...
  • 1 篇 univ texas houst...
  • 1 篇 russian acad sci...
  • 1 篇 eth zentrum semi...
  • 1 篇 department of bi...
  • 1 篇 nanjing univ sta...
  • 1 篇 department of st...

作者

  • 6 篇 buehlmann peter
  • 3 篇 kalisch markus
  • 2 篇 foraita ronja
  • 2 篇 ruetimann philip...
  • 2 篇 maathuis marloes...
  • 2 篇 didelez vanessa
  • 2 篇 wong t. c.
  • 2 篇 witte janine
  • 1 篇 nie lei
  • 1 篇 ahelegbey daniel...
  • 1 篇 moreno luis
  • 1 篇 pala valeria
  • 1 篇 bernhard schölko...
  • 1 篇 molnar denes
  • 1 篇 yi-ke guo
  • 1 篇 paul m. matthews
  • 1 篇 pigeot iris
  • 1 篇 abramov maxim
  • 1 篇 uhler caroline
  • 1 篇 matthews paul m.

语言

  • 22 篇 英文
  • 1 篇 其他
检索条件"主题词=PC-algorithm"
23 条 记 录,以下是1-10 订阅
排序:
The pc-algorithm of the Algebraic Bayesian Network Secondary Structure Training  1
收藏 引用
19th Russian Conference on Artificial Intelligence (RCAI)
作者: Kharitonov, Nikita Abramov, Maxim Tulupyev, Alexander St Petersburg State Univ St Petersburg Russia Russian Acad Sci St Petersburg Fed Res Ctr St Petersburg Russia
Algebraic Bayesian networks and Bayesian belief networks are one of the probabilistic graphical models. One of the main tasks which need to be solved during the networks' handling is the model structure training. ... 详细信息
来源: 评论
Identification of Direction of Time in Vector Autoregressive Systems Using pc algorithm  6th
Identification of Direction of Time in Vector Autoregressive...
收藏 引用
6th International Conference on Communications, Signal Processing, and Systems (ICCSPS)
作者: Alipourfard, Borzou Gao, Jean X. Univ Texas Arlington Dept Comp Sci & Engn Arlington TX 76019 USA
In this paper we study whether it is possible to identify the direction of time in vector autoregressive processes. We prove a result regarding time reversibility of such systems and propose an algorithm to identify t... 详细信息
来源: 评论
Default count-based network models for credit contagion
收藏 引用
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2022年 第1期73卷 139-152页
作者: Agosto, Arianna Ahelegbey, Daniel Felix Univ Pavia Dept Econ & Management I-27100 Pavia Italy
Interconnectedness between economic institution and sectors, already recognised as a trigger of the great financial crisis in 2008-2009, is assuming growing importance in financial systems. In this article, we study c... 详细信息
来源: 评论
Multiple imputation and test-wise deletion for causal discovery with incomplete cohort data
收藏 引用
STATISTICS IN MEDICINE 2022年 第23期41卷 4716-4743页
作者: Witte, Janine Foraita, Ronja Didelez, Vanessa Leibniz Inst Prevent Res & Epidemiol BIPS Bremen Germany Univ Bremen Fac Math & Comp Sci Bremen Germany
Causal discovery algorithms estimate causal graphs from observational data. This can provide a valuable complement to analyses focusing on the causal relation between individual treatment-outcome pairs. Constraint-bas... 详细信息
来源: 评论
A longitudinal causal graph analysis investigating modifiable risk factors and obesity in a European cohort of children and adolescents
收藏 引用
SCIENTIFIC REPORTS 2024年 第1期14卷 1-14页
作者: Foraita, Ronja Witte, Janine Boernhorst, Claudia Gwozdz, Wencke Pala, Valeria Lissner, Lauren Lauria, Fabio Reisch, Lucia A. Molnar, Denes De Henauw, Stefaan Moreno, Luis Veidebaum, Toomas Tornaritis, Michael Pigeot, Iris Didelez, Vanessa Leibniz Inst Prevent Res & Epidemiol BIPS Achterstr 30 D-28359 Bremen Germany Univ Bremen Fac Math & Comp Sci Bremen Germany Justus Liebig Univ Dept Consumer Res Commun & Food Sociol Giessen Germany Copenhagen Business Sch Dept Management Soc & Commun Frederiksberg Denmark Fdn IRCCS Ist Nazl Tumori Milano Epidemiol & Prevent Unit Milan Italy Univ Gothenburg Sahlgrenska Acad Inst Med Sch Publ Hlth & Community Med Gothenburg Sweden CNR Inst Food Sci Avellino Italy Univ Cambridge El Erian Inst Behav Econ & Policy Cambridge England Univ Pecs Sch Med Dept Paediat Pecs Hungary Univ Ghent Fac Med & Hlth Sci Dept Publ Hlth & Primary Care Ghent Belgium Univ Zaragoza Inst Invest Sanitaria Aragon IIS Aragon IA2 GENUD Growth Exercise Nutr & Dev Res Grp Zaragoza Spain Natl Inst Hlth Dev Dept Chron Dis Tallinn Estonia Res & Educ Inst Child Hlth Strovolos Cyprus
Childhood obesity is a complex disorder that appears to be influenced by an interacting system of many factors. Taking this complexity into account, we aim to investigate the causal structure underlying childhood obes... 详细信息
来源: 评论
Learning Causal Networks via Additive Faithfulness
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-38页
作者: Lee, Kuang-Yao Liu, Tianqi Li, Bing Zhao, Hongyu Temple Univ Dept Stat Sci 1810 Liacouras Walk Philadelphia PA 19122 USA Google LLC 111 8th Ave New York NY 10011 USA Penn State Univ Dept Stat 326 Thomas Bldg University Pk PA 16802 USA Yale Sch Publ Hlth Dept Biostat 60 Coll St New Haven CT 06520 USA
In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI),... 详细信息
来源: 评论
Learning Bayesian network structures using weakest mutual-information-first strategy
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2019年 114卷 84-98页
作者: Qi, Xiaolong Fan, Xiaocong Gao, Yang Liu, Yanfang Nanjing Univ State Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China Yili Normal Univ Dept Elect & Informat Engn Yining Peoples R China Calif State Univ Coll Sci & Math San Marcos CA USA Longyan Univ Coll Math & Informat Engn Longyan Peoples R China
In Bayesian network structure learning, the quality of the directed graph learned by the constraint-based approaches can be greatly affected by the order of choosing variable pairs and the order of selecting condition... 详细信息
来源: 评论
Learning causal networks via additive faithfulness
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 1849-1886页
作者: Kuang-Yao Lee Tianqi Liu Bing Li Hongyu Zhao Department of Statistical Science Temple University Philadelphia PA Google LLC New York NY Department of Statistics Pennsylvania State University University Park PA Department of Biostatistics Yale School of Public Health New Haven CT
In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI),... 详细信息
来源: 评论
Analyzing customer satisfaction in self-service technology adopted in airports
收藏 引用
JOURNAL OF MARKETING ANALYTICS 2018年 第1期6卷 6-18页
作者: Yau, Hon Keung Tang, Ho Yi Horace City Univ Hong Kong Dept Syst Engn & Engn Management Kowloon Tong Kowloon Hong Kong Peoples R China
Customer satisfaction level is one of key performance indicators in the service industry. The various factors affecting this are studied to maintain an excellent relationship with customers. Self-service technology (S... 详细信息
来源: 评论
Inferring Functional Connectivity in fMRI Using Minimum Partial Correlation
收藏 引用
International Journal of Automation and computing 2017年 第4期14卷 371-385页
作者: Lei Nie Xian Yang Paul M. Matthews Zhi-Wei Xu Yi-Ke Guo Department of Computing Imperial College London London SW7 2AZ UK Department of Medicine Imperial College London London SW7 2AZ UK Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China School of Computer Engineering and Science Shanghai University Shanghai 200444 China
Functional connectivity has emerged as a promising approach to study the functional organisation of the brain and to define features for prediction of brain state. The most widely used method for inferring functional ... 详细信息
来源: 评论