咨询与建议

限定检索结果

文献类型

  • 179 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 167 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 20 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 40 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 320 篇 probabilistic pr...
  • 33 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 12 篇 semantics
  • 12 篇 markov chain mon...
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 7 篇 variational infe...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 symbolic executi...
  • 6 篇 uncertainty quan...
  • 6 篇 reliability
  • 6 篇 sequential monte...
  • 6 篇 bayesian statist...
  • 5 篇 type systems
  • 5 篇 program analysis
  • 5 篇 hierarchical mod...

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=PROBABILISTIC PROGRAMMING"
320 条 记 录,以下是171-180 订阅
排序:
Trace Types and Denotational Semantics for Sound Programmable Inference in probabilistic Languages
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2020年 第POPL期4卷 1–32页
作者: Lew, Alexander K. Cusumano-Towner, Marco F. Sherman, Benjamin Carbin, Michael Mansinghka, Vikash K. MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA MIT Dept Brain & Cognit Sci Cambridge MA 02139 USA
Modern probabilistic programming languages aim to formalize and automate key aspects of probabilistic modeling arid inference. Many languages provide constructs for programmable inference that enable developers to imp... 详细信息
来源: 评论
Semantics of Higher-Order probabilistic Programs with Conditioning
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2020年 第POPL期4卷 1–29页
作者: Dahlqvist, Fredrik Kozen, Dexter UCL Comp Sci London England Imperial Coll London Elect & Elect Engn London England Cornell Univ Comp Sci Ithaca NY USA
We present a denotational semantics for higher-order probabilistic programs in terms of linear operators between Banach spaces. Our semantics is rooted in the classical theory of Banach spaces and their tensor product... 详细信息
来源: 评论
Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum
收藏 引用
G3-GENES GENOMES GENETICS 2020年 第2期10卷 769-781页
作者: dos Santos, Jhonathan P. R. Fernandes, Samuel B. McCoy, Scott Lozano, Roberto Brown, Patrick J. Leakey, Andrew D. B. Buckler, Edward S. Garcia, Antonio A. F. Gore, Michael A. Cornell Univ Sch Integrat Plant Sci Plant Breeding & Genet Sect 358 Plant Sci Bldg Ithaca NY 14853 USA Cornell Univ Inst Genom Divers Ithaca NY 14853 USA Univ Sao Paulo Luiz de Queiroz Coll Agr Dept Genet Piracicaba SP Brazil Univ Illinois Dept Crop Sci Urbana IL 61801 USA Univ Illinois Inst Genom Biol Urbana IL 61801 USA Univ Illinois Dept Plant Biol Urbana IL 61801 USA Univ Calif Davis Dept Plant Sci Sect Agr Plant Biol Davis CA 95616 USA ARS USDA RW Holley Ctr Ithaca NY 14853 USA
The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity ... 详细信息
来源: 评论
Toward an idiomatic framework for cognitive robotics
收藏 引用
PATTERNS 2022年 第7期3卷 100533页
作者: Damgaard, Malte Rormose Pedersen, Rasmus Bak, Thomas Aalborg Univ Dept Elect Syst Automat & Control DK-9220 Aalborg Denmark
Inspired by the "cognitive hourglass'' model presented by the researchers behind the cognitive architecture called Sigma, we propose a framework for developing cognitive architectures for cognitive roboti... 详细信息
来源: 评论
On the Probability and Cost of Ignorance, Inconsistency, Nonsense and More
收藏 引用
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING 2020年 第5-6期34卷 423-450页
作者: Szalas, Andrzej Univ Warsaw Dept Math Informat & Mech Warsaw Poland Univ Linkoping Dept Comp & Informat Sci Linkoping Sweden
Ignorance, inconsistency, nonsense and similar phenomena are omnipresent in everyday reasoning. They have been intensively studied, especially in the area of multiple-valued logics. Therefore we develop a framework fo... 详细信息
来源: 评论
Towards Verified Stochastic Variational Inference for probabilistic Programs
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2020年 第POPL期4卷 1–33页
作者: Lee, Wonyeol Yu, Hangyeol Rival, Xavier Yang, Hongseok Korea Adv Inst Sci & Technol Sch Comp Daejeon South Korea INRIA Paris Dept Informat ENS Paris France PSL Univ CNRS Paris France
probabilistic programming is the idea of writing models from statistics and machine learning using program notations and reasoning about these models using generic inference engines. Recently its combination with deep... 详细信息
来源: 评论
Scaling Exact Inference for Discrete probabilistic Programs
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2020年 第OOPSLA期4卷 1–31页
作者: Holtzen, Steven Van den Broeck, Guy Millstein, Todd Univ Calif Los Angeles Los Angeles CA 90095 USA
probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for app... 详细信息
来源: 评论
Designing Perceptual Puzzles by Differentiating probabilistic Programs  22
Designing Perceptual Puzzles by Differentiating Probabilisti...
收藏 引用
ACM SIGGRAPH 2022 Conference Proceedings
作者: Kartik Chandra Tzu-Mao Li Joshua Tenenbaum Jonathan Ragan-Kelley Computer Science & Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology (MIT) United States of America Department of Computer Science and Engineering (CSE) University of California San Diego United States of America Department of Brain and Cognitive Sciences (BCS) Center for Brains Minds & Machines (CBMM) Computer Science & Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology (MIT) United States of America
We design new visual illusions by finding “adversarial examples” for principled models of human perception — specifically, for probabilistic models, which treat vision as Bayesian inference. To perform this search ... 详细信息
来源: 评论
Understanding Human Generated Decision Data  1
收藏 引用
10th Annual International symposium on Business Modeling and Software Design (BMSD)
作者: Silvander, Johan Blekinge Inst Technol Software Engn Res Lab Sweden Karlskrona Sweden
In order to design intent-driven systems, the understanding of how the data is generated is essential. Without the understanding of the data generation process, it is not possible to use interventions, and counterfact... 详细信息
来源: 评论
Bayesian protein superposition using Hamiltonian Monte Carlo  20
Bayesian protein superposition using Hamiltonian Monte Carlo
收藏 引用
20th IEEE International Conference on Bioinformatics and Bioengineering (BIBE)
作者: Moreta, Lys Sanz Al-Sibahi, Ahmad Salim Hamelryck, Thomas Univ Copenhagen Dept Comp Sci Copenhagen Denmark Univ Copenhagen Sect Computat & RNA Biol Bioinformat Ctr Copenhagen Denmark
Optimally superimposing protein structures is essential to study their structure, function, dynamics and evolution. We present THESEUS NUTS (No U-Turn Sampler), a Bayesian version of the THESEUS model [1]-[3] which re... 详细信息
来源: 评论