咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 167 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 20 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 40 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 307 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=PROBABILISTIC PROGRAMMING"
321 条 记 录,以下是311-320 订阅
排序:
Machine Learning Methods for Assessing Economic Security Indicators in the Life Cycle of On-Board Automation Systems on a Given Platform
Machine Learning Methods for Assessing Economic Security Ind...
收藏 引用
Systems of Signals Generating and Processing in the Field of on Board Communications
作者: S. V. Kozlov E. A. Voronin Federal State Institution «Federal Research Center «Informatics and Management» of the Russian Academy of Sciences Moscow Russia
A mathematical approach is presented using a unified indicator of assessing economic security in the field of creating on-board complexes of technical equipment as a payload for installation on a given technical platf... 详细信息
来源: 评论
programming Uncertain hings  16
Programming Uncertain <T>hings
收藏 引用
Proceedings of the Twenty-First International Conference on Architectural Support for programming Languages and Operating Systems
作者: Kathryn S. McKinley Microsoft Research Redmond WA USA
Innovation flourishes with good abstractions. For instance, codification of the IEEE Floating Point standard in 1985 was critical to the subsequent success of scientific computing. programming languages currently lack... 详细信息
来源: 评论
Static Analysis for probabilistic Programs: Inferring Whole Program Properties from Finitely Many Paths  13
Static Analysis for Probabilistic Programs: Inferring Whole ...
收藏 引用
ACM SIGPLAN Conference on programming Language Design and Implementation
作者: Sriram Sankaranarayanan Aleksandar Chakarov Sumit Gulwani University of Colorado Microsoft Research
We propose an approach for the static analysis of probabilistic programs that sense, manipulate, and control based on uncertain data. Examples include programs used in risk analysis, medical decision making and cyber-... 详细信息
来源: 评论
Mastering uncertainty in performance estimations of configurable software systems  20
Mastering uncertainty in performance estimations of configur...
收藏 引用
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering
作者: Johannes Dorn Sven Apel Norbert Siegmund Leipzig University Saarland University
Understanding the influence of configuration options on performance is key for finding optimal system configurations, system understanding, and performance debugging. In prior research, a number of performance-influen... 详细信息
来源: 评论
Designing Perceptual Puzzles by Differentiating probabilistic Programs  22
Designing Perceptual Puzzles by Differentiating Probabilisti...
收藏 引用
ACM SIGGRAPH 2022 Conference Proceedings
作者: Kartik Chandra Tzu-Mao Li Joshua Tenenbaum Jonathan Ragan-Kelley Computer Science & Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology (MIT) United States of America Department of Computer Science and Engineering (CSE) University of California San Diego United States of America Department of Brain and Cognitive Sciences (BCS) Center for Brains Minds & Machines (CBMM) Computer Science & Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology (MIT) United States of America
We design new visual illusions by finding “adversarial examples” for principled models of human perception — specifically, for probabilistic models, which treat vision as Bayesian inference. To perform this search ... 详细信息
来源: 评论
Uncertain: a first-order type for uncertain data  14
Uncertain<T>: a first-order type for uncertain data
收藏 引用
Proceedings of the 19th international conference on Architectural support for programming languages and operating systems
作者: James Bornholt Todd Mytkowicz Kathryn S. McKinley Australian National University Canberra Australia Microsoft Research Redmond WA USA
Emerging applications increasingly use estimates such as sensor data (GPS), probabilistic models, machine learning, big data, and human data. Unfortunately, representing this uncertain data with discrete types (floats... 详细信息
来源: 评论
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms for probabilistic Models  19
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms fo...
收藏 引用
Proceedings of the Twenty-Fourth International Conference on Architectural Support for programming Languages and Operating Systems
作者: Subho S. Banerjee Zbigniew T. Kalbarczyk Ravishankar K. Iyer University of Illinois at Urbana-Champaign Urbana IL USA
probabilistic models (PMs) are ubiquitously used across a variety of machine learning applications. They have been shown to successfully integrate structural prior information about data and effectively quantify uncer... 详细信息
来源: 评论
WATER QUALITY MANAGEMENT in the HSINTIEN RIVER IN TAIWAN
收藏 引用
JAWRA Journal of the American Water Resources Association 1978年 第3期14卷 689-695页
作者: Lohani, B.N. Thanh, N.C. Environmental Engineering Division Asian Institute of Technology Bangkok P. O. Box 2754 Thailand
ABSTRACT: The objective of cost effectiveness has led to the use of mathematical decision models to implement the best water quality control program in a river from the various alternatives available at a time. The pa... 详细信息
来源: 评论
Bayesian hierarchical spatial models: Implementing the Besag York Mollie model in stan
收藏 引用
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY 2019年 31卷 100301-000页
作者: Morris, Mitzi Wheeler-Martin, Katherine Simpson, Dan Mooney, Stephen J. Gelman, Andrew DiMaggio, Charles Columbia Univ Inst Social & Econ Res & Policy New York NY USA NYU Dept Surg Sch Med New York NY 10016 USA Univ Toronto Dept Stat Sci Toronto ON Canada Univ Washington Dept Epidemiol Seattle WA 98195 USA Columbia Univ Dept Stat New York NY USA
This report presents a new implementation of the Besag-York-Mollie (BYM) model in Stan, a probabilistic programming platform which does full Bayesian inference using Hamiltonian Monte Carlo (HMC). We review the spatia... 详细信息
来源: 评论
BayesPy: variational Bayesian inference in Python
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2016年 第1期17卷
作者: Kevin Murphy Bernhard Schölkopf Jaakko Luttinen Google MPI for Intelligent Systems Department of Computer Science Aalto University Finland
BayesPy is an open-source Python software package for performing variational Bayesian inference. It is based on the variational message passing framework and supports conjugate exponential family models. By removing t... 详细信息
来源: 评论