咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 307 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=PROBABILISTIC PROGRAMMING"
321 条 记 录,以下是41-50 订阅
排序:
probabilistic programming in Python using PyMC3
收藏 引用
PEERJ COMPUTER SCIENCE 2016年 第4期2016卷
作者: Salvatier, John Wiecki, Thomas, V Fonnesbeck, Christopher AI Impacts Berkeley CA USA Quantopian Inc Boston MA 02110 USA Vanderbilt Univ Dept Biostat 221 Kirkland Hall Nashville TN 37235 USA
probabilistic programming allows for automatic Bayesian inference on user-defined probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC) sampling allow inference on increasingly complex models. This ... 详细信息
来源: 评论
A probabilistic programming Approach for Outlier Detection in Healthcare Claims  15
A Probabilistic Programming Approach for Outlier Detection i...
收藏 引用
15th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Bauder, Richard A. Khoshgoftaar, Taghi M. Florida Atlantic Univ Boca Raton FL 33431 USA
Healthcare is an integral component in people's lives, especially for the rising elderly population. Medicare is one such healthcare program that provides for the needs of the elderly. It is imperative that these ... 详细信息
来源: 评论
Gen: A General-Purpose probabilistic programming System with Programmable Inference  2019
Gen: A General-Purpose Probabilistic Programming System with...
收藏 引用
40th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI) part of ACM's Federated Computing Research Conference (FCRC)
作者: Cusumano-Towner, Marco F. Saad, Feras A. Lew, Alexander K. Mansinghka, Vikash K. MIT Cambridge MA 02139 USA
Although probabilistic programming is widely used for some restricted classes of statistical models, existing systems lack the flexibility and efficiency needed for practical use with more challenging models arising i... 详细信息
来源: 评论
Optimization Framework with Minimum Description Length Principle for probabilistic programming  8th
Optimization Framework with Minimum Description Length Princ...
收藏 引用
8th International Conference on Artificial General Intelligence (AGI)
作者: Potapov, Alexey Batishcheva, Vita Rodionov, Sergey ITMO Univ St Petersburg Russia St Petersburg State Univ St Petersburg 199034 Russia AIDEUS Moscow Russia Aix Marseille Univ CNRS UMR 7326 LAM F-13388 Marseille France
Application of the Minimum Description Length principle to optimization queries in probabilistic programming was investigated on the example of the C++ probabilistic programming library under development. It was shown... 详细信息
来源: 评论
Etalumis: Bringing probabilistic programming to Scientific Simulators at Scale  19
Etalumis: Bringing Probabilistic Programming to Scientific S...
收藏 引用
International Conference for High Performance Computing, Networking, Storage and Analysis (SC)
作者: Baydin, Atilim Gunes Shao, Lei Bhimji, Wahid Heinrich, Lukas Meadows, Lawrence Liu, Jialin Munk, Andreas Naderiparizi, Saeid Gram-Hansen, Bradley Louppe, Gilles Ma, Mingfei Zhao, Xiaohui Torr, Philip Lee, Victor Cranmer, Kyle Prabhat Wood, Frank Univ Oxford Oxford England Intel Corp Santa Clara CA 95051 USA Lawrence Berkeley Natl Lab Berkeley CA USA CERN Geneva Switzerland Univ British Columbia Vancouver BC Canada Univ Liege Liege Belgium NYU New York NY 10003 USA
probabilistic programming languages (PPLs) are receiving widespread attention for performing Bayesian inference in complex generative models. However, applications to science remain limited because of the impracticabi... 详细信息
来源: 评论
Multivariate outlier detection in medicare claims payments applying probabilistic programming methods
收藏 引用
HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY 2017年 第3-4期17卷 256-289页
作者: Bauder, Richard A. Khoshgoftaar, Taghi M. Florida Atlantic Univ Boca Raton FL 33431 USA
The rising elderly population continues to demand more cost-effective healthcare programs. In particular, Medicare is a vital program serving the needs of the elderly in the United States. The growing number of people... 详细信息
来源: 评论
Bayesian Object Models for Robotic Interaction with Differentiable probabilistic programming  6
Bayesian Object Models for Robotic Interaction with Differen...
收藏 引用
6th Conference on Robot Learning (CoRL)
作者: Jatavallabhula, Krishna Murthy Macklin, Miles Fox, Dieter Garg, Animesh Ramos, Fabio NVIDIA Santa Clara CA 95050 USA
A hallmark of human intelligence is the ability to build rich mental models of previously unseen objects from very few interactions. To achieve true, continuous autonomy, robots too must possess this ability. Importan... 详细信息
来源: 评论
A Lambda-Calculus Foundation for Universal probabilistic programming  2016
A Lambda-Calculus Foundation for Universal Probabilistic Pro...
收藏 引用
21st ACM SIGPLAN International Conference on Functional programming (ICFP)
作者: Borgstrom, Johannes Dal Lago, Ugo Gordon, Andrew D. Szymczak, Marcin Uppsala Univ Uppsala Sweden Univ Bologna I-40126 Bologna Italy INRIA Rocquencourt France Microsoft Res Cambridge England Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland
We develop the operational semantics of an untyped probabilistic lambda-calculus with continuous distributions, and both hard and soft constraints, as a foundation for universal probabilistic programming languages suc... 详细信息
来源: 评论
A Functional Account of probabilistic programming with Possible Worlds Declarative Pearl  1
收藏 引用
16th International Symposium on Functional and Logic programming (FLOPS)
作者: van den Berg, Birthe Schrijvers, Tom Katholieke Univ Leuven Leuven Belgium
While there has been much cross-fertilization between functional and logic programming-e.g., leading to functional models of many Prolog features-this appears to be much less the case regarding probabilistic programmi... 详细信息
来源: 评论
Automatic Sampler Discovery via probabilistic programming and Approximate Bayesian Computation  9th
Automatic Sampler Discovery via Probabilistic Programming an...
收藏 引用
9th International Conference on Artificial General Intelligence (AGI) Held as Part of Joint Multi-Conference on Human-Level Intelligence (HLAI)
作者: Perov, Yura Wood, Frank Univ Oxford Dept Engn Sci Oxford England
We describe an approach to automatic discovery of samplers in the form of human interpretable probabilistic programs. Specifically, we learn the procedure code of samplers for one-dimensional distributions. We formula... 详细信息
来源: 评论