咨询与建议

限定检索结果

文献类型

  • 24 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 26 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 软件工程
    • 2 篇 网络空间安全
  • 8 篇 理学
    • 6 篇 数学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 38 篇 parallel and dis...
  • 5 篇 federated learni...
  • 3 篇 outlier detectio...
  • 3 篇 deep learning
  • 3 篇 scheduling polic...
  • 3 篇 distance-based o...
  • 3 篇 optimization
  • 3 篇 machine learning
  • 3 篇 high performance...
  • 3 篇 randomized algor...
  • 2 篇 matrix factoriza...
  • 2 篇 collaborative fi...
  • 2 篇 quantum computin...
  • 2 篇 load balancing
  • 2 篇 wireless communi...
  • 2 篇 matrix completio...
  • 2 篇 convergence
  • 2 篇 divide-and-conqu...
  • 2 篇 robust matrix fa...
  • 2 篇 large-scale mach...

机构

  • 2 篇 forschungszentru...
  • 2 篇 univ calabria di...
  • 2 篇 univ bologna dep...
  • 2 篇 univ calif berke...
  • 2 篇 italian natl res...
  • 1 篇 univ iceland dep...
  • 1 篇 singapore univ t...
  • 1 篇 princeton univ d...
  • 1 篇 google res mount...
  • 1 篇 college of telec...
  • 1 篇 kyushu univ int ...
  • 1 篇 unidade de ciênc...
  • 1 篇 auburn univ mont...
  • 1 篇 kyoto univ grad ...
  • 1 篇 boise state univ...
  • 1 篇 italian natl res...
  • 1 篇 department of el...
  • 1 篇 college of portl...
  • 1 篇 natl univ singap...
  • 1 篇 univ miami coope...

作者

  • 4 篇 angiulli fabrizi...
  • 3 篇 basta stefano
  • 3 篇 lodi stefano
  • 3 篇 sartori claudio
  • 2 篇 michael i. jorda...
  • 2 篇 pang guohao
  • 2 篇 zhu xiaorong
  • 2 篇 jordan michael i...
  • 2 篇 cavallaro gabrie...
  • 2 篇 folino gianluigi
  • 1 篇 liu zuozhu
  • 1 篇 barakat chadi
  • 1 篇 mehrpouyan hani
  • 1 篇 sauerwald thomas
  • 1 篇 fard arash
  • 1 篇 he h.
  • 1 篇 sun he
  • 1 篇 feng zhengkun
  • 1 篇 miller john a.
  • 1 篇 singh pankaj

语言

  • 37 篇 英文
  • 1 篇 其他
检索条件"主题词=Parallel and Distributed Algorithms"
38 条 记 录,以下是1-10 订阅
排序:
Statistical properties of a class of randomized binary search algorithms
收藏 引用
PERFORMANCE EVALUATION 2025年 168卷
作者: Xia, Ye Univ Florida Dept Comp & Informat Sci & Engn Gainesville FL 32611 USA
In this paper, we analyze the statistical properties of a randomized binary search algorithm and its variants. These algorithms have applications in caching and load balancing in distributed environments such as peer-... 详细信息
来源: 评论
Training efficiency optimization algorithm of wireless federated learning based on processor performance and network condition awareness
收藏 引用
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING 2024年 第1期2024卷 98页
作者: Pang, Guohao Zhu, Xiaorong Nanjing Univ Posts & Telecommun Coll Portland Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China
With the explosive growth of smart mobile devices in wireless networks, the increasing computational power of mobile chips and the growing concern for personal privacy, a decentralized deep learning framework at the m... 详细信息
来源: 评论
Robust Federated Learning With Noisy Labeled Data Through Loss Function Correction
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2023年 第3期10卷 1501-1511页
作者: Chen, Li Ang, Fan Chen, Yunfei Wang, Weidong Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230027 Anhui Peoples R China Univ Warwick Sch Engn Coventry CV4 7AL England
Federated learning (FL) is a communication efficient machine learning paradigm to leverage distributed data at the network edge. Nevertheless, FL usually fails to train a high-quality model from the networks, where th... 详细信息
来源: 评论
Efficiency Optimization Method of Wireless Federated Learning Considering Computational Capability and Channel State  23
Efficiency Optimization Method of Wireless Federated Learnin...
收藏 引用
23rd IEEE International Conference on Communication Technology, ICCT 2023
作者: Pang, Guohao Li, Fengguo Zhu, Xiaorong College of Portland Nanjing University of Posts and Telecommunications Nanjing China China Mobile Company Shandong China College of Telecommunication and Information Engineering Nanjing University of Posts and Telecommunications Nanjing China
Due to the explosive growth in the variety of smart mobile terminals in wireless networks, the increasing computing capability of mobile chips, and the public's growing concern for personal privacy, it is a better... 详细信息
来源: 评论
Iterated Vector Fields and Conservatism, with Applications to Federated Learning  33
Iterated Vector Fields and Conservatism, with Applications t...
收藏 引用
33rd International Conference on Algorithmic Learning Theory (ALT)
作者: Charles, Zachary Rush, Keith Google Res Mountain View CA 94043 USA
We study whether iterated vector fields (vector fields composed with themselves) are conservative. We give explicit examples of vector fields for which this self-composition preserves conservatism. Notably, this inclu... 详细信息
来源: 评论
A data structure perspective to the RDD-based Apriori algorithm on Spark
收藏 引用
International Journal of Information Technology (Singapore) 2022年 第3期14卷 1585-1594页
作者: Singh, Pankaj Singh, Sudhakar Mishra, P.K. Garg, Rakhi Department of Computer Science Banaras Hindu University Varanasi India Department of Electronics and Communication University of Allahabad Prayagraj India Mahila Maha Vidyalaya Banaras Hindu University Varanasi India
During the recent years, a number of efficient and scalable frequent itemset mining algorithms for big data analytics have been proposed by many researchers. Initially, MapReduce-based frequent itemset mining algorith... 详细信息
来源: 评论
Practice and Experience in using parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures
Practice and Experience in using Parallel and Scalable Machi...
收藏 引用
35th IEEE International parallel and distributed Processing Symposium (IPDPS)
作者: Riedel, Morris Sedona, Rocco Barakat, Chadi Einarsson, Petur Hassanian, Reza Cavallaro, Gabriele Book, Matthias Neukirchen, Helmut Lintermann, Andreas Univ Iceland Dept Comp Sci Reykjavik Iceland Forschungszentrum Julich Julich Supercomp Ctr Julich Germany
We observe a continuously increased use of Deep Learning (DL) as a specific type of Machine Learning (ML) for data-intensive problems (i.e., 'big data') that requires powerful computing resources with equally ... 详细信息
来源: 评论
PRACTICE AND EXPERIENCE IN USING parallel AND SCALABLE MACHINE LEARNING IN REMOTE SENSING FROM HPC OVER CLOUD TO QUANTUM COMPUTING
PRACTICE AND EXPERIENCE IN USING PARALLEL AND SCALABLE MACHI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Rieder, Morris Cavallaro, Gabriele Benediktsson, Jon Atli Univ Iceland Sch Engn & Nat Sci Reykjavik Iceland Forschungszentrum Julich Julich Supercomp Ctr Julich Germany
Using computationally efficient techniques for transforming the massive amount of Remote Sensing (RS) data into scientific understanding is critical for Earth science. The utilization of efficient techniques through i... 详细信息
来源: 评论
Novel Control Approaches for Demand Response With Real-Time Pricing Using parallel and distributed Consensus-Based ADMM
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2019年 第10期66卷 7935-7945页
作者: Dinh Hoa Nguyen Azuma, Shun-Ichi Sugie, Toshiharu Kyushu Univ Int Inst Carbon Neutral Energy Res Fukuoka Fukuoka 8190395 Japan Kyushu Univ Inst Math Ind Fukuoka Fukuoka 8190395 Japan Nagoya Univ Grad Sch Engn Dept Mech Syst Engn Nagoya Aichi 4648603 Japan Kyoto Univ Grad Sch Informat Dept Syst Sci Kyoto 6068501 Japan
This paper studies the automated demand response (DR) problem in smart grids equipped with information and communication technology networks, where power generating and consuming units can exchange information as a mu... 详细信息
来源: 评论
Scheduling Policies for Federated Learning in Wireless Networks
收藏 引用
IEEE TRANSACTIONS ON COMMUNICATIONS 2020年 第1期68卷 317-333页
作者: Yang, Howard H. Liu, Zuozhu Quek, Tony Q. S. Poor, H. Vincent Singapore Univ Technol & Design Informat Syst Technol & Design Pillar Singapore 487372 Singapore Natl Univ Singapore Dept Stat & Appl Probabil Singapore 119077 Singapore Princeton Univ Dept Elect Engn Princeton NJ 08544 USA
Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning mod... 详细信息
来源: 评论