咨询与建议

限定检索结果

文献类型

  • 24 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 26 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 软件工程
    • 2 篇 网络空间安全
  • 8 篇 理学
    • 6 篇 数学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 38 篇 parallel and dis...
  • 5 篇 federated learni...
  • 3 篇 outlier detectio...
  • 3 篇 deep learning
  • 3 篇 scheduling polic...
  • 3 篇 distance-based o...
  • 3 篇 optimization
  • 3 篇 machine learning
  • 3 篇 high performance...
  • 3 篇 randomized algor...
  • 2 篇 matrix factoriza...
  • 2 篇 collaborative fi...
  • 2 篇 quantum computin...
  • 2 篇 load balancing
  • 2 篇 wireless communi...
  • 2 篇 matrix completio...
  • 2 篇 convergence
  • 2 篇 divide-and-conqu...
  • 2 篇 robust matrix fa...
  • 2 篇 large-scale mach...

机构

  • 2 篇 forschungszentru...
  • 2 篇 univ calabria di...
  • 2 篇 univ bologna dep...
  • 2 篇 univ calif berke...
  • 2 篇 italian natl res...
  • 1 篇 univ iceland dep...
  • 1 篇 singapore univ t...
  • 1 篇 princeton univ d...
  • 1 篇 google res mount...
  • 1 篇 college of telec...
  • 1 篇 kyushu univ int ...
  • 1 篇 unidade de ciênc...
  • 1 篇 auburn univ mont...
  • 1 篇 kyoto univ grad ...
  • 1 篇 boise state univ...
  • 1 篇 italian natl res...
  • 1 篇 department of el...
  • 1 篇 college of portl...
  • 1 篇 natl univ singap...
  • 1 篇 univ miami coope...

作者

  • 4 篇 angiulli fabrizi...
  • 3 篇 basta stefano
  • 3 篇 lodi stefano
  • 3 篇 sartori claudio
  • 2 篇 michael i. jorda...
  • 2 篇 pang guohao
  • 2 篇 zhu xiaorong
  • 2 篇 jordan michael i...
  • 2 篇 cavallaro gabrie...
  • 2 篇 folino gianluigi
  • 1 篇 liu zuozhu
  • 1 篇 barakat chadi
  • 1 篇 mehrpouyan hani
  • 1 篇 sauerwald thomas
  • 1 篇 fard arash
  • 1 篇 he h.
  • 1 篇 sun he
  • 1 篇 feng zhengkun
  • 1 篇 miller john a.
  • 1 篇 singh pankaj

语言

  • 37 篇 英文
  • 1 篇 其他
检索条件"主题词=Parallel and Distributed Algorithms"
38 条 记 录,以下是21-30 订阅
Evaluation-Time Bias in Quasi-Generational and Steady-State Asynchronous Evolutionary algorithms  16
Evaluation-Time Bias in Quasi-Generational and Steady-State ...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Scott, Eric O. De Jong, Kenneth A. George Mason Univ Dept Comp Sci Fairfax VA 22030 USA
A number of papers have emerged in the last two years that apply and study asynchronous master-slave evolutionary algorithms based on a steady-state model. These efforts are largely motivated by the observation that, ... 详细信息
来源: 评论
parallel Streaming Signature EM-tree: A Clustering Algorithm for Web Scale Applications  15
Parallel Streaming Signature EM-tree: A Clustering Algorithm...
收藏 引用
24th International Conference on World Wide Web (WWW)
作者: De Vries, Christopher M. De Vine, Lance Geva, Shlomo Nayak, Richi Game Analyt ApS Berlin Germany Queensland Univ Technol Brisbane Qld Australia
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundre... 详细信息
来源: 评论
Scalable architecture for allocation of idle CPUs in a P2P network
收藏 引用
2nd International Conference on High Performance Computing and Communications (HPCC 2006)
作者: Celaya, Javier Arronategui, Unai Univ Zaragoza Dept Comp Sci & Syst Engn Zaragoza 50018 Spain
In this paper we present a scalable, distributed architecture that allocates idle CPUs for task execution, where any node may request the execution of a group of tasks by other ones. A fast, scalable discovery protoco... 详细信息
来源: 评论
Practice and Experience in using parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures
Practice and Experience in using Parallel and Scalable Machi...
收藏 引用
35th IEEE International parallel and distributed Processing Symposium (IPDPS)
作者: Riedel, Morris Sedona, Rocco Barakat, Chadi Einarsson, Petur Hassanian, Reza Cavallaro, Gabriele Book, Matthias Neukirchen, Helmut Lintermann, Andreas Univ Iceland Dept Comp Sci Reykjavik Iceland Forschungszentrum Julich Julich Supercomp Ctr Julich Germany
We observe a continuously increased use of Deep Learning (DL) as a specific type of Machine Learning (ML) for data-intensive problems (i.e., 'big data') that requires powerful computing resources with equally ... 详细信息
来源: 评论
Tight Bounds for Randomized Load Balancing on Arbitrary Network Topologies
Tight Bounds for Randomized Load Balancing on Arbitrary Netw...
收藏 引用
IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS)
作者: Sauerwald, Thomas Sun, He Max Planck Inst Informat D-66123 Saarbrucken Germany
We consider the problem of balancing load items (tokens) on networks. Starting with an arbitrary load distribution, we allow in each round nodes to exchange tokens with their neighbors. The goal is to achieve a distri... 详细信息
来源: 评论
Improving the Scalability of a Hurricane Forecast System in Mixed-parallel Environments Advancing the WRF framework toward faster and more accurate forecasts  16
Improving the Scalability of a Hurricane Forecast System in ...
收藏 引用
16th IEEE Int Conf on High Performance Computing and Communications/11th IEEE Int Conf on Embedded Software and Systems\6th Int Symposium on Cyberspace Safety and Security
作者: Quirino, Thiago Santos Delgado, Javier Zhang, Xuejin NOAA Hurricane Res Div US DOC OARAOMLHRD Miami FL 33165 USA Univ Miami Cooperat Inst Marine & Atmospher Studies Miami FL USA
The Hurricane Weather Research and Forecasting (HWRF) model is one of the premier models in NOAA's operational suite of severe weather forecasting systems. An axiom in numerical weather prediction suggests that mo... 详细信息
来源: 评论
A data structure perspective to the RDD-based Apriori algorithm on Spark
收藏 引用
International Journal of Information Technology (Singapore) 2022年 第3期14卷 1585-1594页
作者: Singh, Pankaj Singh, Sudhakar Mishra, P.K. Garg, Rakhi Department of Computer Science Banaras Hindu University Varanasi India Department of Electronics and Communication University of Allahabad Prayagraj India Mahila Maha Vidyalaya Banaras Hindu University Varanasi India
During the recent years, a number of efficient and scalable frequent itemset mining algorithms for big data analytics have been proposed by many researchers. Initially, MapReduce-based frequent itemset mining algorith... 详细信息
来源: 评论
PRACTICE AND EXPERIENCE IN USING parallel AND SCALABLE MACHINE LEARNING IN REMOTE SENSING FROM HPC OVER CLOUD TO QUANTUM COMPUTING
PRACTICE AND EXPERIENCE IN USING PARALLEL AND SCALABLE MACHI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Rieder, Morris Cavallaro, Gabriele Benediktsson, Jon Atli Univ Iceland Sch Engn & Nat Sci Reykjavik Iceland Forschungszentrum Julich Julich Supercomp Ctr Julich Germany
Using computationally efficient techniques for transforming the massive amount of Remote Sensing (RS) data into scientific understanding is critical for Earth science. The utilization of efficient techniques through i... 详细信息
来源: 评论
Efficiency Optimization Method of Wireless Federated Learning Considering Computational Capability and Channel State  23
Efficiency Optimization Method of Wireless Federated Learnin...
收藏 引用
23rd IEEE International Conference on Communication Technology, ICCT 2023
作者: Pang, Guohao Li, Fengguo Zhu, Xiaorong College of Portland Nanjing University of Posts and Telecommunications Nanjing China China Mobile Company Shandong China College of Telecommunication and Information Engineering Nanjing University of Posts and Telecommunications Nanjing China
Due to the explosive growth in the variety of smart mobile terminals in wireless networks, the increasing computing capability of mobile chips, and the public's growing concern for personal privacy, it is a better... 详细信息
来源: 评论
CoCoA: A General Framework for Communication-Efficient distributed Optimization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2018年 18卷
作者: Smith, Virginia Forte, Simone Ma, Chenxin Takac, Martin Jordan, Michael I. Jaggi, Martin Stanford Univ Dept Comp Sci Stanford CA 94305 USA Swiss Fed Inst Technol Dept Comp Sci CH-8006 Zurich Switzerland Lehigh Univ Ind & Syst Engn Dept Bethlehem PA 18015 USA Univ Calif Berkeley Div Comp Sci Berkeley CA 94720 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA Ecole Polytech Fed Lausanne Sch Comp & Commun Sci CH-1015 Lausanne Switzerland
The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that ... 详细信息
来源: 评论