咨询与建议

限定检索结果

文献类型

  • 5 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 6 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 控制科学与工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 6 篇 parallel dataflo...
  • 2 篇 apache flink
  • 2 篇 distributed data...
  • 2 篇 mapreduce
  • 2 篇 monad comprehens...
  • 2 篇 performance eval...
  • 2 篇 cost
  • 1 篇 data placement
  • 1 篇 large-scale data...
  • 1 篇 emma
  • 1 篇 data-parallel ex...
  • 1 篇 resource managem...
  • 1 篇 scalable data pr...
  • 1 篇 scheduling
  • 1 篇 dynamic scaling
  • 1 篇 scala macros
  • 1 篇 data-intensive a...
  • 1 篇 resource utiliza...

机构

  • 3 篇 tech univ berlin
  • 2 篇 tu berlin
  • 1 篇 tech univ berlin...
  • 1 篇 technische unive...

作者

  • 3 篇 thamsen lauritz
  • 3 篇 kao odej
  • 2 篇 alexandrov alexa...
  • 2 篇 markl volker
  • 2 篇 renner thomas
  • 2 篇 krastev georgi
  • 1 篇 salzmann andreas
  • 1 篇 verbitskiy ilya
  • 1 篇 lauritz thamsen
  • 1 篇 katsifodimos ast...
  • 1 篇 ilya verbitskiy
  • 1 篇 odej kao

语言

  • 6 篇 英文
检索条件"主题词=Parallel dataflows"
6 条 记 录,以下是1-10 订阅
排序:
Continuously Improving the Resource Utilization of Iterative parallel dataflows  36
Continuously Improving the Resource Utilization of Iterative...
收藏 引用
36th IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Thamsen, Lauritz Renner, Thomas Kao, Odej Tech Univ Berlin Berlin Germany
parallel dataflow systems like Apache Flink allow analysis of large datasets with iterative programs. However, allocating a cost-effective set of resources for such jobs is a difficult task as the resource utilization... 详细信息
来源: 评论
Emma in Action: Declarative dataflows for Scalable Data Analysis  16
Emma in Action: Declarative Dataflows for Scalable Data Anal...
收藏 引用
ACM SIGMOD International Conference on Management of Data
作者: Alexandrov, Alexander Salzmann, Andreas Krastev, Georgi Katsifodimos, Asterios Markl, Volker TU Berlin Berlin Germany
parallel dataflow APIs based on second-order functions were originally seen as a flexible alternative to SQL. Over time, however, their complexity increased due to the number of physical aspects that had to be exposed... 详细信息
来源: 评论
When to Use a Distributed Dataflow Engine: Evaluating the Performance of Apache Flink  13
When to Use a Distributed Dataflow Engine: Evaluating the Pe...
收藏 引用
Conference on UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld
作者: Verbitskiy, Ilya Thamsen, Lauritz Kao, Odej Tech Univ Berlin Berlin Germany
With the increasing amount of available data, distributed data processing systems like Apache Flink and Apache Spark have emerged that allow to analyze large-scale datasets. However, such engines introduce significant... 详细信息
来源: 评论
CoLoc: Distributed Data and Container Colocation for Data-Intensive Applications  4
CoLoc: Distributed Data and Container Colocation for Data-In...
收藏 引用
4th IEEE International Conference on Big Data (Big Data)
作者: Renner, Thomas Thamsen, Lauritz Kao, Odej Tech Univ Berlin Berlin Germany
The performance of scalable analytic frameworks supporting data-intensive parallel applications often depends significantly on the time it takes to read input data. Therefore, existing frameworks like Spark and Flink ... 详细信息
来源: 评论
Representations and Optimizations for Embedded parallel Dataflow Languages
收藏 引用
ACM TRANSACTIONS ON DATABASE SYSTEMS 2019年 第1期44卷 4-4页
作者: Alexandrov, Alexander Krastev, Georgi Markl, Volker Tech Univ Berlin Database Syst & Informat Management Grp DIMA Bldg EN Off EN7Einsteinufer 17 D-10587 Berlin Germany TU Berlin Berlin Germany
parallel dataflow engines such as Apache Hadoop, Apache Spark, and Apache Flink are an established alternative to relational databases for modern data analysis applications. A characteristic of these systems is a scal... 详细信息
来源: 评论
When to Use a Distributed Dataflow Engine: Evaluating the Performance of Apache Flink
When to Use a Distributed Dataflow Engine: Evaluating the Pe...
收藏 引用
IEEE International Conference on Ubiquitous Intelligence and Computing
作者: Ilya Verbitskiy Lauritz Thamsen Odej Kao Technische Universitat Berlin
With the increasing amount of available data, distributed data processing systems like Apache Flink and Apache Spark have emerged that allow to analyze large-scale datasets. However, such engines introduce significant... 详细信息
来源: 评论