咨询与建议

限定检索结果

文献类型

  • 7 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 10 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 9 篇 计算机科学与技术...
    • 2 篇 机械工程
    • 2 篇 控制科学与工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 软件工程
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 5 篇 医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 3 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 生物学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...

主题

  • 10 篇 pathological ima...
  • 3 篇 attention mechan...
  • 2 篇 deep learning
  • 1 篇 multiscale infor...
  • 1 篇 category feature...
  • 1 篇 transformer
  • 1 篇 mult-category se...
  • 1 篇 domain-specific ...
  • 1 篇 dual attention m...
  • 1 篇 dac-unet
  • 1 篇 colonoscopy
  • 1 篇 fcn-transformer
  • 1 篇 contrastive lear...
  • 1 篇 medical image
  • 1 篇 enhanced pooling...
  • 1 篇 lightweight
  • 1 篇 cnn
  • 1 篇 cross-layer samp...
  • 1 篇 pancreatic adeno...
  • 1 篇 wsi

机构

  • 2 篇 hunan univ med g...
  • 2 篇 monash univ res ...
  • 2 篇 soochow univ sch...
  • 2 篇 guizhou univ col...
  • 1 篇 monash univ res ...
  • 1 篇 shandong fundame...
  • 1 篇 peking universit...
  • 1 篇 shanghai jiao to...
  • 1 篇 shandong youth u...
  • 1 篇 hunan univ med c...
  • 1 篇 central south un...
  • 1 篇 hainan universit...
  • 1 篇 cent south univ ...
  • 1 篇 shanghai jiao to...
  • 1 篇 qilu univ techno...
  • 1 篇 univ dayton dept...
  • 1 篇 chinese academy ...
  • 1 篇 institute of com...
  • 1 篇 shandong comp sc...

作者

  • 2 篇 zhu weifang
  • 2 篇 wu jia
  • 2 篇 shi fei
  • 2 篇 chen xinjian
  • 2 篇 xiang dehui
  • 2 篇 gou fangfang
  • 1 篇 xiangdong wang
  • 1 篇 zhou jing
  • 1 篇 yue hailin
  • 1 篇 li baotian
  • 1 篇 wu kaijie
  • 1 篇 taha tarek m.
  • 1 篇 han yujiao
  • 1 篇 tian jie
  • 1 篇 wendong xu
  • 1 篇 shi hai
  • 1 篇 asari vijayan k.
  • 1 篇 nasrin shamima
  • 1 篇 tian tangbin
  • 1 篇 hong liu

语言

  • 10 篇 英文
检索条件"主题词=Pathological Image Segmentation"
10 条 记 录,以下是1-10 订阅
排序:
PColorSeg_Net: Investigating the impact of different color spaces for pathological image segmentation.
PColorSeg_Net: Investigating the impact of different color s...
收藏 引用
Conference on Applications of Machine Learning
作者: Nasrin, Shamima Alom, Md Zahangir Asari, Vijayan K. Taha, Tarek M. Univ Dayton Dept Elect & Comp Engn Dayton OH 45469 USA
pathological image analysis can benefit significantly from deep learning. In this area, image sizes are quite large and can have different colors and textures. As computational pathology becomes a very promising area ... 详细信息
来源: 评论
Category Feature Reconstruction For pathological image segmentation
Category Feature Reconstruction For Pathological Image Segme...
收藏 引用
Conference on Medical Imaging - Digital and Computational Pathology
作者: Zhou, Zhibang Xiang, Dehui Shi, Fei Zhu, Weifang Chen, Xinjian Soochow Univ Sch Elect & Informat Engn Suzhou 215006 Peoples R China
In recent works, more and more attention mechanisms have been used for medical image segmentation, however, attention mechanisms are not very good at distinguishing categories in multi-category medical image segmentat... 详细信息
来源: 评论
DAC-UNet: Dual Attention CNN-Enhanced CswinUnet for Gastric Cancer pathological image segmentation  2
DAC-UNet: Dual Attention CNN-Enhanced CswinUnet for Gastric ...
收藏 引用
2024 International Conference on Medical Artificial Intelligence
作者: Hu, Tao Pan, Jingshan Li, Na Tian, Tangbin Zhang, Shengyu Zhang, Lu Han, Yujiao Xu, Jiwei Shandong Comp Sci Ctr Key Lab Comp Power Network & Informat Secur Minist EducNatl Supercomp Ctr Jinan Ctr Nat Supercomp Ctr Jinan Jinan Shandong Peoples R China Qilu Univ Technol Shandong Acad Sci Jinan Peoples R China Shandong Fundamental Res Ctr Comp Sci Shandong Prov Key Lab Comp Power Internet & Serv Jinan Shandong Peoples R China
Gastric cancer is one of the most lethal cancers. Currently, clinical diagnosis primarily relies on gastroscopic biopsies and the manual experience of doctors to assess the development of lesions in tissue sections. H... 详细信息
来源: 评论
pathological image segmentation Method Based on Multiscale and Dual Attention
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2024年 第1期2024卷
作者: Wu, Jia Niu, Yuxia Ling, Ziqiang Zhu, Jun Gou, Fangfang Guizhou Univ Coll Comp Sci & Technol State Key Lab Publ Big Data Guiyang 550025 Peoples R China Cent South Univ Sch Comp Sci & Engn Changsha 410083 Peoples R China Monash Univ Res Ctr Artificial Intelligence Clayton Vic 3800 Australia Monash Univ Res Ctr Artificial Intelligence Melbourne Vic 3800 Australia Hunan Univ Med Gen Hosp Huaihua Peoples R China Hunan Univ Med Collaborat Innovat Ctr Med Artificial Intelligence Huaihua Peoples R China
Medical images play a significant part in biomedical diagnosis, but they have a significant feature. The medical images, influenced by factors such as imaging equipment limitations, local volume effect, and others, in... 详细信息
来源: 评论
A lightweight pathological image segmentation framework based on heterogeneous cross-layer sampling  9
A lightweight pathological image segmentation framework base...
收藏 引用
9th IEEE Smart World Congress, SWC 2023
作者: Shi, Hai Chen, Hailong Zhang, Yangyang Wang, Zhengxia Hainan University School of Computer Science and Technology Haikou China
pathological image segmentation is an essential step in the early detection and diagnosis of various diseases. The features of high resolution, complex background structure, and different tissue shape and size of path... 详细信息
来源: 评论
Domain-specific Knowledge Guided Self-supervised Learning for pathological image segmentation
Domain-specific Knowledge Guided Self-supervised Learning fo...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Wang, Chenhui Kuang, Hulin Liu, Jin Li, Junjian Yue, Hailin Wang, Jianxin Central South University Hunan Provincial Key Lab on Bioinformatics School of Computer Science and Engineering Hunan Changsha China
Self-supervised learning provides a possible solution to extract effective visual representations from unlabeled pathological images. However, most of the existing methods either do not effectively utilize domain-spec... 详细信息
来源: 评论
Enhanced Pooling-Convolution for pathological image Multi-class segmentation
Enhanced Pooling-Convolution for Pathological Image Multi-cl...
收藏 引用
Conference on Medical Imaging - Digital and Computational Pathology
作者: Wu, Hao Chen, Xinjian Zhu, Weifang Shi, Fei Xiang, Dehui Soochow Univ Sch Elect & Informat Engn Suzhou 215006 Jiangsu Peoples R China
Recent studies have achieved a great success in medical image segmentation, but do not perform well in the application of pathological image segmentation. In traditional segmentation networks, some important features ... 详细信息
来源: 评论
TransRNetFuse: a highly accurate and precise boundary FCN-transformer feature integration for medical image segmentation
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2025年 第5期11卷 1-19页
作者: Li, Baotian Zhou, Jing Gou, Fangfang Wu, Jia Shandong Youth Univ Polit Sci Sch Informat Engn Jinan 250103 Peoples R China Hunan Univ Med Gen Hosp Huaihua 418000 Peoples R China Guizhou Univ Coll Comp Sci & Technol State Key Lab Publ Big Data Guiyang 550025 Peoples R China Monash Univ Res Ctr Artificial Intelligence Melbourne Vic 3800 Australia
Imaging examinations are integral to the diagnosis and treatment of cancer. Nevertheless, the intricate nature of medical images frequently necessitates that physicians follow time-consuming and potentially fallible d... 详细信息
来源: 评论
Colon tissue image segmentation with MWSI-NET
收藏 引用
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 2022年 第3期60卷 727-737页
作者: Cheng, Hao Wu, Kaijie Tian, Jie Ma, Kai Gu, Chaocheng Guan, Xinping Shanghai Jiao Tong Univ Dept Elect Engn Shanghai Peoples R China Shanghai Jiao Tong Univ Dept Automat Shanghai Peoples R China
Developments in deep learning have resulted in computer-aided diagnosis for many types of cancer. Previously, pathologists manually performed the labeling work in the analysis of colon tissues, which is both time-cons... 详细信息
来源: 评论
CoUNet: An End-to-End Colonoscopy Lesion image segmentation and Classification Framework  20
CoUNet: An End-to-End Colonoscopy Lesion Image Segmentation ...
收藏 引用
Proceedings of the 2020 4th International Conference on Video and image Processing
作者: Wendong Xu Hong Liu Xiangdong Wang Hanqiang Ouyang Yueliang Qian Institute of Computing Technology Chinese Academy of Sciences China Chinese Academy of Sciences China Peking University Third Hospital China
Colonoscopy tissue slides examination can find cells of early-stage colon tumor, which is important to clinical diagnosis. DigestPath2019 in MICCAI is a recent challenge to automatically segment colonoscopy lesion reg... 详细信息
来源: 评论