Background: Artificial intelligence (AI), more specifically large languagemodels (LLMs), holds significant potential in revolutionizing emergency care delivery by optimizing clinical workflows and enhancing the quali...
详细信息
Background: Artificial intelligence (AI), more specifically large languagemodels (LLMs), holds significant potential in revolutionizing emergency care delivery by optimizing clinical workflows and enhancing the quality of decision-making. Although enthusiasm for integrating LLMs into emergency medicine (EM) is growing, the existing literature is characterized by a disparate collection of individual studies, conceptual analyses, and preliminary implementations. Given these complexities and gaps in understanding, a cohesive framework is needed to comprehend the existing body of knowledge on the application of LLMs in Objective: Given the absence of a comprehensive framework for exploring the roles of LLMs in EM, this scoping review aims to systematically map the existing literature on LLMs' potential applications within EM and identify directions for future research. Addressing this gap will allow for informed advancements in the field. Methods: Using PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) criteria, we searched Ovid MEDLINE, Embase, Web of Science, and Google Scholar for papers published between January 2018 and August 2023 that discussed LLMs' use in EM. We excluded other forms of AI. A total of 1994 unique titles and abstracts were screened, and each full-text paper was independently reviewed by 2 authors. Data were abstracted independently, and 5 authors performed a collaborative quantitative and qualitative synthesis of the data. Results: A total of 43 papers were included. Studies were predominantly from 2022 to 2023 and conducted in the United States and China. We uncovered four major themes: (1) clinical decision-making and support was highlighted as a pivotal area, with LLMs playing a substantial role in enhancing patient care, notably through their application in real-time triage, allowing early recognition of patient urgency;(2) efficiency, workflow, and information management demonstrat
暂无评论