The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. (IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4):360-368, 2006) in the context of biological networks. The problem...
详细信息
The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. (IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4):360-368, 2006) in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors M. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis (Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 5125, pp. 575-586, 2008) and Koutis and Williams (Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 5555, pp. 653-664, 2009), we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes #W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.
We study the NP-hard LIST-COLORED GRAPH MOTIF problem which, given an undirected list-colored graph G = (V, E) and a multiset M of colors, asks for maximum-cardinality sets S subset of V and M' subset of M such th...
详细信息
We study the NP-hard LIST-COLORED GRAPH MOTIF problem which, given an undirected list-colored graph G = (V, E) and a multiset M of colors, asks for maximum-cardinality sets S subset of V and M' subset of M such that G vertical bar S vertical bar is connected and contains exactly ( with respect to multiplicity) the colors in M'. LIST-COLORED GRAPH MOTIF has applications in the analysis of biological networks. We study LIST-COLORED GRAPH MOTIF with respect to three different parameterizations. For the parameters motif size vertical bar M vertical bar and solution size vertical bar S vertical bar, we present fixed-parameter algorithms, whereas for the parameter vertical bar V vertical bar - vertical bar M vertical bar, we show W[1]-hardness for general instances and achieve fixed-parameter tractability for a special case of LIST-COLORED GRAPH MOTIF. We implemented the fixed-parameter algorithms for parameters vertical bar M vertical bar and vertical bar S vertical bar, developed further speed-up heuristics for these algorithms, and applied them in the context of querying protein-interaction networks, demonstrating their usefulness for realistic instances. Furthermore, we show that extending the request for motif connectedness to stronger demands, such as biconnectedness or bridge-connectedness leads to W[1]-hard problems when the parameter is the motif size vertical bar M vertical bar.
暂无评论