咨询与建议

限定检索结果

文献类型

  • 116 篇 期刊文献
  • 50 篇 会议

馆藏范围

  • 166 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 75 篇 计算机科学与技术...
    • 39 篇 电气工程
    • 25 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 18 篇 仪器科学与技术
    • 16 篇 软件工程
    • 10 篇 机械工程
    • 9 篇 网络空间安全
    • 7 篇 材料科学与工程(可...
    • 7 篇 测绘科学与技术
    • 7 篇 环境科学与工程(可...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 化学工程与技术
    • 5 篇 农业工程
    • 5 篇 食品科学与工程(可...
    • 4 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
  • 62 篇 理学
    • 37 篇 生物学
    • 17 篇 化学
    • 8 篇 物理学
    • 7 篇 生态学
    • 4 篇 地球物理学
    • 3 篇 数学
  • 44 篇 农学
    • 20 篇 作物学
    • 10 篇 植物保护
  • 19 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 12 篇 医学
    • 9 篇 临床医学
  • 2 篇 法学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 166 篇 pest detection
  • 41 篇 deep learning
  • 12 篇 image processing
  • 12 篇 machine learning
  • 11 篇 computer vision
  • 10 篇 object detection
  • 9 篇 agriculture
  • 8 篇 precision agricu...
  • 7 篇 convolutional ne...
  • 6 篇 cnn
  • 6 篇 yolo
  • 6 篇 feature extracti...
  • 6 篇 artificial intel...
  • 6 篇 convolutional ne...
  • 5 篇 internet of thin...
  • 5 篇 image segmentati...
  • 5 篇 iot
  • 5 篇 remote sensing
  • 5 篇 yolov5
  • 5 篇 classification

机构

  • 4 篇 beijing forestry...
  • 3 篇 natl engn lab ag...
  • 3 篇 cent south univ ...
  • 3 篇 symbiosis int de...
  • 2 篇 hamad bin khalif...
  • 2 篇 univ sci & techn...
  • 2 篇 univ politecn va...
  • 2 篇 univ south austr...
  • 2 篇 natl engn res ct...
  • 2 篇 swiss fed res in...
  • 2 篇 changsha xiangfe...
  • 2 篇 shanghai jiao to...
  • 2 篇 chinese acad sci...
  • 2 篇 usda ars aerial ...
  • 2 篇 intelligent syst...
  • 2 篇 beijing paide sc...
  • 2 篇 galgotias univ s...
  • 2 篇 rajasthan tech u...
  • 2 篇 vtu navodaya ins...
  • 1 篇 huaibei normal u...

作者

  • 4 篇 tang zhe
  • 3 篇 dhanaraj rajesh ...
  • 3 篇 yang xinting
  • 3 篇 qi fang
  • 3 篇 li wenyong
  • 3 篇 ali md. akkas
  • 3 篇 chodey madhuri d...
  • 2 篇 zhang lingyan
  • 2 篇 lu jiajia
  • 2 篇 jin guang
  • 2 篇 yang chenghai
  • 2 篇 di yang
  • 2 篇 li rui
  • 2 篇 bouzerdoum abdes...
  • 2 篇 liu liu
  • 2 篇 nagar harshita
  • 2 篇 bai jie
  • 2 篇 shariff c. nooru...
  • 2 篇 brockerhoff ecke...
  • 2 篇 popescu dan

语言

  • 159 篇 英文
  • 7 篇 其他
检索条件"主题词=Pest Detection"
166 条 记 录,以下是1-10 订阅
排序:
pest detection in dynamic environments: an adaptive continual test-time domain adaptation strategy
收藏 引用
PLANT METHODS 2025年 第1期21卷 1-23页
作者: Fu, Rui Wang, Shiyu Dong, Mingqiu Sun, Hao Al-Absi, Mohammed Abdulhakim Zhang, Kaijie Chen, Qian Xiao, Liqun Wang, Xuewei Li, Ye Weifang Univ Sci & Technol Shandong Facil Hort Bioengn Res Ctr Weifang 262700 Peoples R China Sichuan Int Studies Univ Chongqing 400031 Peoples R China Beijing Inst Technol Beijing 100081 Peoples R China Kyungdong Univ Dept Smart Comp 46 4 Gil Giosung 24764 Gangwondo South Korea Sichuan Technol & Business Univ Chengdu 610000 Sichuan Peoples R China Southwest Jiaotong Univ Chengdu 610000 Sichuan Peoples R China
pest management is essential for agricultural production and food security, as pests can cause significant crop losses and economic impact. Early pest detection is key to timely intervention. While object detection mo... 详细信息
来源: 评论
A transformer-based model with feature compensation and local information enhancement for end-to-end pest detection
收藏 引用
COMPUTERS AND ELECTRONICS IN AGRICULTURE 2025年 231卷
作者: Liu, Honglin Zhan, Yongzhao Sun, Jun Mao, Qirong Wu, Tongwang Jiangsu Univ Sch Comp Sci & Commun Engn Zhenjiang 212013 Jiangsu Peoples R China Jiangsu Engn Res Ctr Big Data Ubiquitous Percept & Zhenjiang Peoples R China Jiangsu Univ Sch Elect & Informat Engn Zhenjiang 212013 Jiangsu Peoples R China
The development of accurate and robust pest detection is a crucial step toward reliable forecasting of agricultural pests in precision agriculture and has gained significant attention in many countries. Compared to co... 详细信息
来源: 评论
YOLO-UP: A High-Throughput pest detection Model for Dense Cotton Crops Utilizing UAV-Captured Visible Light Imagery
收藏 引用
IEEE ACCESS 2025年 13卷 19937-19945页
作者: Sun, Chenglei Bin Azman, Afizan Wang, Zaiyun Gao, Xiaoxiao Ding, Kai Taylors Univ Sch Comp Sci Subang Jaya 47500 Selangor Malaysia Shandong Vocat Coll Informat Technol Dept Elect & Commun Weifang 261061 Shandong Peoples R China Shandong Vocat Anim Sci & Vet Coll Dept Anim Sci & Technol Weifang 261061 Shandong Peoples R China Shandong Vocat Coll Informat Technol Dept Digital & Media Weifang 261061 Shandong Peoples R China
Accurate detection of pest species in cotton fields is vital for effective agricultural management and the development of pest-resistant crops. However, achieving high-throughput and precise pest detection in cotton f... 详细信息
来源: 评论
pest-YOLO: A YOLOv5-Based Lightweight Crop pest detection Algorithm
收藏 引用
INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION 2025年 第1期15卷 11-25页
作者: Luo, Wanbo Leshan Vocat & Tech Coll Dept Artificial Intelligence Leshan Peoples R China
Traditional crop pest detection methods face the challenge of numerous parameters and computations, making it difficult to deploy on embedded devices with limited resources. Consequently, a lightweight network is an e... 详细信息
来源: 评论
Apnet: Lightweight network for apricot tree disease and pest detection in real-world complex backgrounds
收藏 引用
PLANT METHODS 2025年 第1期21卷 1-18页
作者: Li, Minglang Tao, Zhiyong Yan, Wentao Lin, Sen Feng, Kaihao Zhang, Zeyi Jing, Yurong Liaoning Tech Univ Sch Elect & Informat Engn Huludao 125105 Peoples R China Chinese Acad Agr Sci Res Inst Pomol Xingcheng 125100 Peoples R China Shenyang Ligong Univ Sch Automat & Elect Engn Shenyang 110159 Peoples R China
Apricot trees, serving as critical agricultural resources, hold a significant role within the agricultural domain. Conventional methods for detecting pests and diseases in these trees are notably labor-intensive. Many... 详细信息
来源: 评论
IoT-Based Convolutional Neural Networks in a Farm pest detection Using Transfer Learning  5th
IoT-Based Convolutional Neural Networks in a Farm Pest Detec...
收藏 引用
5th International Conference on Computing Science, Communication and Security
作者: Jani, Keyurbhai A. Chaubey, Nirbhay Kumar Panchal, Esan Tripathi, Pramod Yagnik, Shruti Gujarat Technol Univ Comp IT Engn Ahmadabad 382424 Gujarat India Ganpat Univ Comp Sci Mahesana 384012 Gujarat India Govt Polytech Informat Technol Gandhinagar 382027 Gujarat India Indus Univ Comp Engn Ahmadabad 382115 Gujarat India
In this study explores agriculture pest detection using transfer learning with IoT devices, evaluating VGG16, VGG19, Inception, and Xception CNN architectures with the agripest dataset. VGG16 and VGG19 show effective ... 详细信息
来源: 评论
Comparative Analysis of Lenet, Resnet, and InceptionV3 Models for pest detection in Agriculture  1
Comparative Analysis of Lenet, Resnet, and InceptionV3 Model...
收藏 引用
1st International Conference on AIML-Applications for Engineering and Technology, ICAET 2025
作者: Mallela, Rajya Lakshmi Kamepalli, Sujatha Guttula, Sri Naga Sandhya Mendu, Sravanthi Pechetti, Bharath Raj Mendu, Monika Parvathi School of Computing Vignans Foundation for Science Technology and Research Guntur India
The detection of pests in agricultural fields is essential for advancing smart agriculture, aiding in optimizing resource management and enhancing crop yields. This study conducts a thorough performance assessment of ... 详细信息
来源: 评论
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop pest detection
收藏 引用
Computers, Materials and Continua 2025年 第3期83卷 4353-4371页
作者: Zijun Gao Zheyi Li Chunqi Zhang Ying Wang Jingwen Su School of Information Science and Engineering Dalian Polytechnic University Dalian 116034 China
pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks; however, their application in the actual agricultural production process is still challenging owing to the problems of inter... 详细信息
来源: 评论
pest detection in Agricultural Farms using SqueezeNet and Multi-Layer Perceptron Model
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2024年 第6期15卷 802-808页
作者: Yulita, Intan Nurma Prabuwono, Anton Satria Ardiansyah, Firman Rejito, Juli Sholahuddin, Asep Rosadi, Rudi Univ Padjadjaran Dept Comp Sci Sumedang Indonesia King Abdulaziz Univ Fac Comp & Informat Technol Rabigh Rabigh Saudi Arabia Inst Teknol Bisnis Ahmad Dahlan Lamongan Management Bandung Indonesia
Pes detection is essential to protect agricultural systems from economic losses, lower food production, and environmental degradation. detection of pests is a crucial aspect of agricultural sustainability because it h... 详细信息
来源: 评论
pest detection using Adaptive Thresholding
Pest Detection using Adaptive Thresholding
收藏 引用
IEEE International Conference on Computing, Communication and Automation (ICCCA)
作者: Kumar, Yogesh Dubey, Ashwani Kumar Jothi, Adityan Amity Univ Amity Sch Engn Noida India
pest detection is crucial to secure crops and ensure food quality. A lot of work is being carried out for the effective identification of pests. In this paper we will develop a novel and fast methodology to detect and... 详细信息
来源: 评论