咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 4 篇 软件工程

主题

  • 5 篇 reinforcement le...
  • 5 篇 character animat...
  • 5 篇 physics-based si...
  • 4 篇 deep learning
  • 4 篇 neural network
  • 2 篇 multi-agent
  • 2 篇 locomotion contr...
  • 1 篇 variational auto...
  • 1 篇 behavior cloning
  • 1 篇 motion capture

机构

  • 1 篇 seoul natl univ ...
  • 1 篇 seoul natl univ
  • 1 篇 meta ai pittsbur...
  • 1 篇 carnegie mellon ...
  • 1 篇 facebook ai res ...
  • 1 篇 facebook ai res ...
  • 1 篇 meta ai seattle ...

作者

  • 5 篇 won jungdam
  • 4 篇 gopinath deepak
  • 3 篇 hodgins jessica
  • 1 篇 lee jehee
  • 1 篇 joo hanbyul

语言

  • 5 篇 英文
检索条件"主题词=Physics-based Simulation and Control"
5 条 记 录,以下是1-10 订阅
排序:
physics-based Character controllers Using Conditional VAEs
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2022年 第4期41卷 p1-12页
作者: Won, Jungdam Gopinath, Deepak Hodgins, Jessica Meta AI Pittsburgh PA 15211 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
High-quality motion capture datasets are now publicly available, and researchers have used them to create kinematics-based controllers that can generate plausible and diverse human motions without conditioning on spec... 详细信息
来源: 评论
Motion In-betweening for Physically Simulated Characters  22
Motion In-betweening for Physically Simulated Characters
收藏 引用
SIGGRAPH Asia Conference
作者: Gopinath, Deepak Joo, Hanbyul Won, Jungdam Meta AI Seattle WA 98164 USA Seoul Natl Univ Seoul South Korea
We present a motion in-betweening framework to generate high quality, physically plausible character animation when we are given temporally sparse keyframes as soft animation constraints. More specifically, we learn i... 详细信息
来源: 评论
control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2021年 第4期40卷 1-11页
作者: Won, Jungdam Gopinath, Deepak Hodgins, Jessica Facebook AI Res Pittsburgh PA 15260 USA
In two-player competitive sports, such as boxing and fencing, athletes often demonstrate efficient and tactical movements during a competition. In this paper, we develop a learning framework that generates control pol... 详细信息
来源: 评论
A Scalable Approach to control Diverse Behaviors for Physically Simulated Characters
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2020年 第4期39卷 33:1–33:12页
作者: Won, Jungdam Gopinath, Deepak Hodgins, Jessica Facebook AI Res Menlo Pk CA 94025 USA
Human characters with a broad range of natural looking and physically realistic behaviors will enable the construction of compelling interactive experiences. In this paper, we develop a technique for learning controll... 详细信息
来源: 评论
Learning Body Shape Variation in physics-based Characters
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2019年 第6期38卷 207-207页
作者: Won, Jungdam Lee, Jehee Seoul Natl Univ Dept Comp Sci & Engn Seoul South Korea
Recently, deep reinforcement learning (DRL) has attracted great attention in designing controllers for physics-based characters. Despite the recent success of DRL, the learned controller is viable for a single charact... 详细信息
来源: 评论