咨询与建议

限定检索结果

文献类型

  • 297 篇 期刊文献
  • 48 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 349 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 96 篇 计算机科学与技术...
    • 57 篇 力学(可授工学、理...
    • 54 篇 机械工程
    • 48 篇 电气工程
    • 39 篇 材料科学与工程(可...
    • 36 篇 控制科学与工程
    • 32 篇 动力工程及工程热...
    • 29 篇 石油与天然气工程
    • 25 篇 化学工程与技术
    • 18 篇 土木工程
    • 13 篇 水利工程
    • 13 篇 环境科学与工程(可...
    • 7 篇 信息与通信工程
    • 7 篇 交通运输工程
    • 7 篇 软件工程
    • 6 篇 仪器科学与技术
    • 6 篇 核科学与技术
    • 6 篇 安全科学与工程
    • 5 篇 建筑学
    • 5 篇 船舶与海洋工程
  • 114 篇 理学
    • 43 篇 数学
    • 34 篇 物理学
    • 15 篇 化学
    • 13 篇 生物学
    • 9 篇 地球物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 海洋科学
  • 38 篇 管理学
    • 38 篇 管理科学与工程(可...
  • 4 篇 医学
  • 2 篇 经济学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 349 篇 physics-informed...
  • 30 篇 deep learning
  • 21 篇 machine learning
  • 20 篇 neural networks
  • 11 篇 lithium-ion batt...
  • 11 篇 additive manufac...
  • 10 篇 uncertainty quan...
  • 8 篇 structural healt...
  • 8 篇 neural ordinary ...
  • 7 篇 deep neural netw...
  • 7 篇 partial differen...
  • 6 篇 scientific machi...
  • 6 篇 surrogate model
  • 6 篇 physics-informed...
  • 6 篇 gaussian process...
  • 6 篇 artificial neura...
  • 5 篇 gaussian process...
  • 5 篇 model predictive...
  • 5 篇 symbolic regress...
  • 5 篇 degradation

机构

  • 6 篇 northeastern uni...
  • 4 篇 iowa state univ ...
  • 4 篇 xi an jiao tong ...
  • 4 篇 univ elect sci &...
  • 4 篇 univ cent florid...
  • 3 篇 chengdu univ adv...
  • 3 篇 sichuan univ col...
  • 3 篇 cornell univ sib...
  • 3 篇 univ illinois de...
  • 3 篇 brown univ div a...
  • 3 篇 pacific northwes...
  • 3 篇 indian inst tech...
  • 3 篇 purdue univ sch ...
  • 3 篇 stanford univ de...
  • 3 篇 sapienza univ ro...
  • 3 篇 georgia inst tec...
  • 3 篇 univ utah dept c...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ colorado de...
  • 2 篇 univ notre dame ...

作者

  • 5 篇 jamali safa
  • 4 篇 bouklas nikolaos
  • 4 篇 zhu shun-peng
  • 4 篇 wang pingfeng
  • 4 篇 saadat milad
  • 4 篇 karniadakis geor...
  • 4 篇 tartakovsky alex...
  • 4 篇 lui yu hui
  • 4 篇 hu chao
  • 3 篇 lawson kathryn
  • 3 篇 hu shan
  • 3 篇 jiang gang
  • 3 篇 chen jianli
  • 3 篇 berto filippo
  • 3 篇 yan bicheng
  • 3 篇 de jesus abilio ...
  • 3 篇 tac vahidullah
  • 3 篇 krishnan n. m. a...
  • 3 篇 ma zhihao
  • 3 篇 shen chaopeng

语言

  • 299 篇 英文
  • 40 篇 其他
  • 1 篇 中文
检索条件"主题词=Physics-informed Machine Learning"
349 条 记 录,以下是1-10 订阅
排序:
physics-informed machine learning model for prediction of ground reflected wave peak overpressure
收藏 引用
Defence Technology(防务技术) 2024年 第11期41卷 119-133页
作者: Haoyu Zhang Yuxin Xu Lihan Xiao Canjie Zhen State Key Lab of Explosion Science and Technology Beijing Institute of TechnologyBeijing 100081China Chongqing Innovation Center Beijing Institute of TechnologyChongqing 404100China Tangshan Research Institute Beijing Institute of TechnologyTangshan 442000China Shandong Special Industry Group Co.Ltd. Zibo 255000China
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem... 详细信息
来源: 评论
physics-informed machine learning for solar-thermal power systems
收藏 引用
ENERGY CONVERSION AND MANAGEMENT 2025年 327卷
作者: Osorio, Julian D. De Florio, Mario Hovsapian, Rob Chryssostomidis, Chrys Karniadakis, George Em Natl Renewable Energy Lab Ctr Energy Convers & Storage Syst Golden CO 80401 USA Brown Univ Div Appl Math Providence RI 02912 USA Natl Renewable Energy Lab Energy Syst Integrat Golden CO 80401 USA MIT Dept Mech Engn Cambridge MA 02139 USA
Thermal energy system modeling traditionally relies on experimental correlations to estimate heat transfer coefficients using dimensionless numbers and thermophysical properties. Multiple correlations have been propos... 详细信息
来源: 评论
physics-informed machine learning for system reliability analysis and design with partially observed information
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2025年 254卷
作者: Xu, Yanwen Bansal, Parth Wang, Pingfeng Li, Yumeng Univ Texas Dallas Dept Mech Engn Richardson TX 75080 USA Univ Illinois Urbana & Champaign Dept Ind & Enterprise Syst Engn Urbana IL 61801 USA
Constructing a high-fidelity predictive model is crucial for analyzing complex systems, optimizing system design, and enhancing system reliability. Although Gaussian Process (GP) models are well-known for their capabi... 详细信息
来源: 评论
physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions
收藏 引用
ENERGY 2025年 318卷
作者: Lin, Chunsong Tuo, Xianguo Wu, Longxing Zhang, Guiyu Lyu, Zhiqiang Zeng, Xiangling Southwest Univ Sci & Technol Sch Informat Engn Mianyang 621010 Peoples R China Anhui Sci & Technol Univ Coll Mech Engn Chuzhou 233100 Peoples R China Sichuan Univ Sci & Engn Sch Mech Engn Yibin 64400 Peoples R China Anhui Univ Sch Internet Hefei 230039 Anhui Peoples R China
Accurate State of Health (SOH) estimation for lithium batteries (LIBs) is crucial for the safe operation of battery systems. However, the lack of physical properties and the varied operating conditions in real-world u... 详细信息
来源: 评论
physics-informed machine learning for forecasting power exchanges at the interface between transmission and distribution systems
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2025年 238卷
作者: Rosseel, Arnaud Zad, Bashir Bakhshideh Vallee, Francois De Greve, Zacharie Univ Mons Power Syst & Markets Res Grp Mons Belgium 31 Blvd Dolez B-7000 Mons Belgium
Power exchanges at Transmission-Distribution interfaces are crucial for both the Transmission System Operators (TSOs) and the Distribution System Operators (DSOs). In the past, simple hypothesis as a constant power fa... 详细信息
来源: 评论
physics-informed machine learning for battery degradation diagnostics: A comparison of state-of-the-art methods
收藏 引用
ENERGY STORAGE MATERIALS 2024年 68卷
作者: Navidi, Sina Thelen, Adam Li, Tingkai Hu, Chao Univ Connecticut Dept Mech Engn Storrs CT 06269 USA Iowa State Univ Dept Mech Engn Ames IA 50011 USA
Monitoring the health of lithium-ion batteries' internal components as they age is crucial for optimizing cell design and usage control strategies. However, quantifying component-level degradation typically involv... 详细信息
来源: 评论
physics-informed machine learning with Data-Driven Equations for Predicting Organic Solar Cell Performance
收藏 引用
ACS APPLIED MATERIALS & INTERFACES 2024年 第42期16卷 57467-57480页
作者: Khatua, Rudranarayan Das, Bibhas Mondal, Anirban Indian Inst Technol Gandhinagar Dept Chem Gandhinagar 382355 Gujarat India
Organic solar cells (OSCs) have emerged as a promising solution in pursuing sustainable energy. This study presents a comprehensive approach to advancing OSC development by integrating data-driven equations from quant... 详细信息
来源: 评论
physics-informed machine learning for reservoir management of enhanced geothermal systems
GEOENERGY SCIENCE AND ENGINEERING
收藏 引用
GEOENERGY SCIENCE AND ENGINEERING 2024年 234卷
作者: Yan, Bicheng Xu, Zhen Gudala, Manojkumar Tariq, Zeeshan Sun, Shuyu Finkbeiner, Thomas King Abdullah Univ Sci & Technol KAUST Phys Sci & Engn PSE Div Thuwal 239556900 Saudi Arabia
With the energy demand arising globally, geothermal recovery by Enhanced Geothermal Systems (EGS) becomes a promising option to bring sustainable energy supply along with mitigating CO2 emission. However, reservoir ma... 详细信息
来源: 评论
physics-informed machine learning for noniterative optimization in geothermal energy recovery
收藏 引用
APPLIED ENERGY 2024年 365卷
作者: Yan, Bicheng Gudala, Manojkumar Hoteit, Hussein Sun, Shuyu Wang, Wendong Jiang, Liangliang King Abdullah Univ Sci & Technol KAUST Phys Sci & Engn PSE Div Thuwal 239556900 Saudi Arabia China Univ Petr East China Sch Petr Engn Qingdao 266580 Peoples R China Univ Calgary Dept Chem & Petr Engn Calgary AB Canada
Geothermal energy is clean, renewable, and cost-effective and its efficient recovery management mandates optimizing engineering parameters while considering the underpinning physics, typically achieved through computa... 详细信息
来源: 评论
physics-informed machine learning for Na-Ion conductivity and activation energy
收藏 引用
JOURNAL OF NON-CRYSTALLINE SOLIDS 2025年 657卷
作者: Mandal, Indrajeet Mannan, Sajid Lu, Yuanqing Gosvami, Nitya Nand Wondraczek, Lothar Krishnan, N. M. Anoop Indian Inst Technol Delhi Sch Interdisciplinary Res New Delhi 110016 India Indian Inst Technol Delhi Dept Civil Engn New Delhi 110016 India Univ Jena Otto Schott Inst Mat Res D-07743 Jena Germany Univ Jena Ctr Energy & Environm Chem CEEC Jena D-07743 Jena Germany Indian Inst Technol Delhi Dept Mat Sci & Engn New Delhi 110016 India Indian Inst Technol Delhi Yardi Sch Artificial Intelligence New Delhi 110016 India
Glass-based electrolytes are promising for solid-state batteries due to the absence of grain boundaries. However, filtering the compositional space for suitable glass formulations is challenging due to the extremely w... 详细信息
来源: 评论