In visual areas of primates, neurons activate in parallel while the animal is engaged in a behavioral task. In this study, we examine the structure of the population code while the animal performs delayed match-to-sam...
详细信息
In visual areas of primates, neurons activate in parallel while the animal is engaged in a behavioral task. In this study, we examine the structure of the population code while the animal performs delayed match-to-sample tasks on complex natural images. The macaque monkeys visualized two consecutive stimuli that were either the same or different, while being recorded with laminar arrays across the cortical depth in cortical areas V1 and V4. We decode correct choice behavior from neural populations of simultaneously recorded units. Utilizing decoding weights, we divide neurons into most informative and less informative and show that most informative neurons in V4, but not in V1, are more strongly synchronized, coupled, and correlated than less informative neurons. Because neurons are divided into two coding pools according to their coding preference, in V4, but not in V1, spiking synchrony, coupling, and correlations within the coding pool are stronger than across coding pools.
Although binocular neurons in the primary visual cortex are sensitive to retinal disparity, their activity does not constitute an unambiguous disparity signal. A multi-spatial-scale neural model for disparity computat...
详细信息
Although binocular neurons in the primary visual cortex are sensitive to retinal disparity, their activity does not constitute an unambiguous disparity signal. A multi-spatial-scale neural model for disparity computation is developed to examine how population activity might be interpreted to overcome ambiguities at the single neuron level. The model incorporates a front end that encodes disparity by a family of complex cell-like energy units and a second stage that reads the population activity. Disparity is recovered by matching the population response to a set of canonical templates, derived from the mean response to white noise stimuli at a range of disparities. Model predictions are qualitatively consistent with a variety of psychophysical results in the literature, including the effects of spatial frequency on stereoacuity and bias in perceived depths, and the effect of standing disparity on increment thresholds. Model predictions are also consistent with data on qualitative appearance of complex stimuli, including depth averaging, transparency, and corrugation. The model also accounts for the non-linear interaction of disparities in compound grating stimuli. These results show that a template-match approach reduces ambiguities in individual and pooled neuronal responses, and allows for a broader range of percepts, consistent with psychophysics, than other models. Thus, the pattern of neural population activity across spatial scales is a better candidate for the neural correlate of depth perception than the activity of single neurons or the pooled activity of multiple neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Odors carrying intrinsic values often trigger instinctive aversive or attractive responses. It is not known how innate valence is encoded. An intuitive model suggests that the information is conveyed through specific ...
详细信息
Odors carrying intrinsic values often trigger instinctive aversive or attractive responses. It is not known how innate valence is encoded. An intuitive model suggests that the information is conveyed through specific channels in hardwired circuits along the olfactory pathway, insulated from influences of other odors, to trigger innate responses. Here, we show that in mice, mixing innately aversive or attractive odors with a neutral odor and, surprisingly, mixing two odors with the same valence, abolish the innate behavioral responses. Recordings from the olfactory bulb indicate that odors are not masked at the level of peripheral activation and glomeruli independently encode components in the mixture. In contrast, crosstalk among the mitral and tufted (M/T) cells changes their patterns of activity such that those elicited by the mixtures can no longer be linearly decoded as separate components. The changes in behavioral and M/T cell responses are associated with reduced activation of brain areas linked to odor preferences. Thus, crosstalk among odor channels at the earliest processing stage in the olfactory pathway leads to re-coding of odor identity to abolish valence associated with the odors. These results are inconsistent with insulated labeled lines and support a model of a common mechanism of odor recognition for both innate and learned valence associations.
Every sensory event elicits activity in a broad population of cells that is distributed within and across cortical areas. How these neurons function together to represent the sensory environment is a major question in...
详细信息
Every sensory event elicits activity in a broad population of cells that is distributed within and across cortical areas. How these neurons function together to represent the sensory environment is a major question in systems neuroscience. A number of proposals have been made, and recent advances in multi-neuronal recording have begun to allow researchers to test the predictions of these population-coding theories. In this review, I provide an introduction to some of the key concepts in population coding and describe several studies in the recent literature. The focus of this review is on sensory representation in the visual cortex and related perceptual decisions. The frameworks used to study population coding include population vectors, linear decoders, and Bayesian inference. Simple examples are provided to illustrate these concepts. Testing theories of population coding is an emerging subject in systems neuroscience, but advances in multi-neuronal recording and analysis suggest that an understanding is within reach. (c) 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
The purpose of the study is to outline a computational architecture for the intelligent processing of sensorimotor patterns. The focus is on the nature of the internal representations of the outside world which are ne...
详细信息
The purpose of the study is to outline a computational architecture for the intelligent processing of sensorimotor patterns. The focus is on the nature of the internal representations of the outside world which are necessary for planning and other goal-oriented functions. A model of cortical map dynamics and self-organization is proposed that integrates a number of concepts and methods partly explored in the field. The novelty and the biological plausibility is related to the global architecture which allows one to deal with sensorimotor patterns in a coordinate-free way, using population codes as distributed internal representations of external variables and the coupled dynamics of cortical maps as a general tool of trajectory formation. The basic computational features of the model are demonstrated in the case of articulatory speech synthesis and some of the metric properties are evaluated by means of simple simulation studies. (C) 1998 Elsevier Science Ltd. All rights reserved.
It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how informa...
详细信息
It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors.
Activity in layer 2/3 of the mouse primary visual cortex has been shown to depend both on visual input and the mouse's locomotion. Moreover, this activity is altered by a mismatch between the observed visual flow ...
详细信息
Activity in layer 2/3 of the mouse primary visual cortex has been shown to depend both on visual input and the mouse's locomotion. Moreover, this activity is altered by a mismatch between the observed visual flow and the predicted visual flow from locomotion. Here, I present a simple computational model that explains previously reported recordings from layer 2/3 neurons in mice. In my model, layer 2/3 encodes the velocity difference between the estimate from visual flow and the prediction from locomotion using a neural population code. Moreover, I describe a hypothesized mechanism for how the brain may carry out computations of variables encoded in population codes. This mechanism may point to a general principle for computing any mathematical function in the brain.
Tuning curves and receptive fields are widely used to describe the selectivity of sensory neurons, but the relationship between firing rates and information is not always intuitive. Neither high firing rates nor high ...
详细信息
Tuning curves and receptive fields are widely used to describe the selectivity of sensory neurons, but the relationship between firing rates and information is not always intuitive. Neither high firing rates nor high tuning curve gradients necessarily mean that stimuli at that part of the tuning curve are well represented by a neuron. Recent research has shown that trial-to-trial variability (noise) and population size can strongly affect which stimuli are most precisely represented by a neuron in the context of a population code (the best-encoded stimulus), and that different measures of information can give conflicting indications. Specifically, the Fisher information is greatest where the tuning curve gradient is greatest, such as on the flanks of peaked tuning curves, but the stimulus-specific information (SSI) is greatest at the tuning curve peak for small populations with high trial-to-trial variability. Previous research in this area has focussed upon unimodal (peaked) tuning curves, and in this article we extend these analyses to monotonic tuning curves. In addition, we examine how stimulus spacing in forced choice tasks affects the best-encoded stimulus. Our results show that, regardless of the tuning curve, Fisher information correctly predicts the best-encoded stimulus for large populations and where the stimuli are closely spaced in forced choice tasks. In smaller populations with high variability, or in forced choice tasks with widely-spaced choices, the best-encoded stimulus falls at the peak of unimodal tuning curves, but is more variable for monotonic tuning curves. Task, population size and variability all need to be considered when assessing which stimuli a neuron represents, but the best-encoded stimulus can be estimated on a case-by case basis using commonly available computing facilities.
Retinal implants electrically stimulate surviving retinal neurons to restore vision in people blinded by outer retinal degeneration. Although the healthy retina is known to transmit a vast amount of visual information...
详细信息
Retinal implants electrically stimulate surviving retinal neurons to restore vision in people blinded by outer retinal degeneration. Although the healthy retina is known to transmit a vast amount of visual information to the brain, it has not been studied whether prosthetic vision contains a similar amount of information. Here, we assessed the neural information transmitted by population responses arising in brisk transient (BT) and brisk sustained (BS) subtypes of ON and OFF retinal ganglion cells (RGCs) in the rabbit retina. To correlate the response heterogeneity and the information transmission, we first quantified the cell-to-cell heterogeneity by calculating the spike time tiling coefficient (STTC) across spiking patterns of RGCs in each type. Then, we computed the neural information encoded by the RGC population in a given type. In responses to light stimulation, spiking activities were more heterogeneous in OFF than ON RGCs (STTCAVG = 0.36, 0.45, 0.77 and 0.55 for OFF BT, OFF BS, ON BT, and ON BS, respectively). Interestingly, however, in responses to electric stimulation, both BT and BS subtypes of OFF RGCs showed remarkably homogeneous spiking patterns across cells (STTCAVG = 0.93 and 0.82 for BT and BS, respectively), whereas the two subtypes of ON RGCs showed slightly increased populational heterogeneity compared to light-evoked responses (STTCAVG = 0.71 and 0.63 for BT and BS, respectively). Consequently, the neural information encoded by the electrically-evoked responses of a population of 15 RGCs was substantially lower in the OFF than the ON pathway: OFF BT and BS cells transmit only similar to 23% and similar to 53% of the neural information transmitted by their ON counterparts. Together with previously-reported natural spiking activities in ON RGCs, the higher neural information may make ON responses more recognizable, eliciting the biased percepts of bright phosphenes.
We discuss how the Fisher information matrix (FIM) may be used as part of an optimization procedure for selecting odor sensors within a population so as to maximize the accuracy with which the overall sensory system m...
详细信息
We discuss how the Fisher information matrix (FIM) may be used as part of an optimization procedure for selecting odor sensors within a population so as to maximize the accuracy with which the overall sensory system may estimate the stimulus. While the same approach may be equally applied to any sensory system that exploits a population coding of the stimulus in order to optimize its performance, we demonstrate how this technique may be used to analyze the performance of both biological and artificial olfactory systems. Thus one application of this method is the optimal design of arrays of artificial olfactory sensors. (C) 2001 Elsevier Science B.V. All rights reserved.
暂无评论