咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 21 篇 会议

馆藏范围

  • 53 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 35 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 7 篇 信息与通信工程
    • 7 篇 软件工程
    • 6 篇 控制科学与工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 4 篇 地球物理学
    • 3 篇 物理学
    • 2 篇 数学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 4 篇 医学
    • 3 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 53 篇 positive and unl...
  • 8 篇 machine learning
  • 4 篇 classification
  • 3 篇 one-class classi...
  • 2 篇 deep learning
  • 2 篇 graph-based lear...
  • 2 篇 traffic classifi...
  • 2 篇 generative adver...
  • 2 篇 anomaly detectio...
  • 2 篇 vertical federat...
  • 2 篇 multi-task learn...
  • 2 篇 mental state pre...
  • 2 篇 feature extracti...
  • 2 篇 regularization
  • 2 篇 tax evasion
  • 2 篇 graph representa...
  • 2 篇 data models
  • 2 篇 training
  • 2 篇 least squares su...
  • 1 篇 outlier detectio...

机构

  • 3 篇 guangdong univ t...
  • 2 篇 guangdong univ t...
  • 2 篇 riken ctr adv in...
  • 2 篇 tianjin univ sci...
  • 1 篇 jiangsu ctr coll...
  • 1 篇 comp res assoc w...
  • 1 篇 hong kong univ s...
  • 1 篇 univ queensland ...
  • 1 篇 baidu inc people...
  • 1 篇 seoul natl univ ...
  • 1 篇 vietnam petr ins...
  • 1 篇 4paradigm inc.
  • 1 篇 beijing jiaotong...
  • 1 篇 guangdong univ t...
  • 1 篇 vietnam natl uni...
  • 1 篇 wuhan univ sch r...
  • 1 篇 netease games fu...
  • 1 篇 hong kong observ...
  • 1 篇 icr inc ny usa
  • 1 篇 univ hong kong d...

作者

  • 4 篇 liu bo
  • 4 篇 xiao yanshan
  • 4 篇 sugiyama masashi
  • 2 篇 ke ting
  • 2 篇 marcacini ricard...
  • 2 篇 stone kerri
  • 2 篇 de souza mariana...
  • 2 篇 lv hui
  • 2 篇 hussey jason
  • 2 篇 li xue
  • 2 篇 rossi rafael ger...
  • 2 篇 zhang lidong
  • 2 篇 jia tong
  • 2 篇 chen dongyue
  • 2 篇 camp tracy
  • 2 篇 zheng qinghua
  • 2 篇 rezende solange ...
  • 2 篇 shi bin
  • 2 篇 dong bo
  • 2 篇 zhang yang

语言

  • 51 篇 英文
  • 2 篇 其他
检索条件"主题词=Positive and Unlabeled Learning"
53 条 记 录,以下是1-10 订阅
排序:
positive and unlabeled learning on generating strategy for weakly anomaly detection
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2025年 第1期19卷 1-11页
作者: Deng, Shizhuo Han, Bowen Li, Xiaohong Lan, Siqi Chen, Dongyue Jia, Tong Wang, Hao Northeastern Univ Coll Informat Sci & Engn Wenhua Rd Shenyang 110819 Liaoning Peoples R China Northeastern Univ Foshan Grad Sch Innovat Panpu Rd Foshan 528311 Guangdong Peoples R China Northeastern Univ Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt Wenhua Rd Shenyang 110819 Liaoning Peoples R China
Anomalies are rare, contextual, and hard to annotate in anomaly detection scenarios. Usually, anomalies are coarse-grained labeled and there exists at least one abnormal patch in image and video segmentation. In such ... 详细信息
来源: 评论
BiCSA-PUL: binary crow search algorithm for enhancing positive and unlabeled learning
收藏 引用
International Journal of Information Technology (Singapore) 2025年 第3期17卷 1729-1743页
作者: Azizi, Nabil Ben Othmane, Mohamed Hamouma, Moumen Siam, Abderrahim Haouassi, Hichem Ledmi, Makhlouf Hamdi-Cherif, Aboubekeur Department of Computer Science Mostefa Ben Boulaid University Batna 2 Batna 05001 Algeria Department of Computer Science Abbes Laghrour University Khenchela 40004 Algeria Knowledge Engineering and IT Security Laboratory (ICOSI) Abbes Laghrour University Khenchela 40004 Algeria Department of Computer Science Ferhat Abbas University of Setif 1 Setif 19137 Algeria
This paper presents a novel metaheuristic binary crow search algorithm (CSA) designed for positive-unlabeled (PU) learning, a paradigm where only positive and unlabeled data are available, with applications in many di... 详细信息
来源: 评论
positive and unlabeled learning for Mobile Application Traffic Classification
Positive and Unlabeled Learning for Mobile Application Traff...
收藏 引用
IEEE Military Communications Conference (MILCOM)
作者: Hussey, Jason Stone, Kerri Camp, Tracy Colorado Sch Mines Golden CO 80401 USA iCR Inc New York NY USA
Encrypted messaging applications are a type of social media that provide privacy for the contents of messages, but are susceptible to side-channel attacks that take advantage of information leaked through network trac... 详细信息
来源: 评论
Robust model selection for positive and unlabeled learning with constraints
收藏 引用
Science China(Information Sciences) 2022年 第11期65卷 94-106页
作者: Tong WEI Hai WANG Weiwei TU Yufeng LI Department of Computer Science and Technology Nanjing University 4Paradigm Inc.
positive and unlabeled(PU) learning is the problem in which training data contains only PU samples. Although PU learning is widely used in real-world applications, its model selection remains challenging. Specifically... 详细信息
来源: 评论
A new method for positive and unlabeled learning with privileged information
收藏 引用
APPLIED INTELLIGENCE 2022年 第3期52卷 2465-2479页
作者: Liu, Bo Liu, Qian Xiao, Yanshan Guangdong Univ Technol Dept Automat Guangzhou 510006 Peoples R China Guangdong Univ Technol Dept Comp Sci Guangzhou 510006 Peoples R China
positive and unlabeled learning (PU learning) has been studied to address the situation in which only positive and unlabeled examples are available. Most of the previous work has been devoted to identifying negative e... 详细信息
来源: 评论
A new dictionary-based positive and unlabeled learning method
收藏 引用
APPLIED INTELLIGENCE 2021年 第12期51卷 8850-8864页
作者: Liu, Bo Liu, Zhijing Xiao, Yanshan Guangdong Univ Technol Guangzhou 510006 Peoples R China Guangdong Univ Technol Dept Automat Guangzhou 510006 Peoples R China Guangdong Univ Technol Dept Comp Sci Guangzhou 510006 Peoples R China
positive and unlabeled learning (PU learning) is designed to solve the problem that we only utilize the labeled positive examples and the unlabeled examples to train a classifier. A variety of methods have been propos... 详细信息
来源: 评论
A network-based positive and unlabeled learning approach for fake news detection
收藏 引用
MACHINE learning 2022年 第10期111卷 3549-3592页
作者: de Souza, Mariana Caravanti Nogueira, Bruno Magalhaes Rossi, Rafael Geraldeli Marcacini, Ricardo Marcondes dos Santos, Brucce Neves Rezende, Solange Oliveira ICMC USP BR-13566590 Sao Carlos Brazil FACOM UFMS BR-79070900 Campo Grande MS Brazil CPTL UFMS BR-79613000 Tres Lagoas Brazil
Fake news can rapidly spread through internet users and can deceive a large audience. Due to those characteristics, they can have a direct impact on political and economic events. Machine learning approaches have been... 详细信息
来源: 评论
A graph-based approach for positive and unlabeled learning
收藏 引用
INFORMATION SCIENCES 2021年 580卷 655-672页
作者: Carnevali, Julio Cesar Rossi, Rafael Geraldeli Milios, Evangelos Lopes, Alneu de Andrade Univ Sao Paulo Inst Math & Comp Sci Sao Paulo SP Brazil Univ Fed Mato Grosso do Sul Campo Grande MS Brazil Dalhousie Univ Halifax NS Canada
positive and unlabeled learning (PUL) uses unlabeled documents and a few positive documents for retrieving a set of "interest" documents from a text collection. Usually, PUL approaches are based on the vecto... 详细信息
来源: 评论
Debiased graph contrastive learning based on positive and unlabeled learning
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE learning AND CYBERNETICS 2024年 第6期15卷 2527-2538页
作者: Li, Zhiqiang Wang, Jie Liang, Jiye Shanxi Univ Sch Comp & Informat Technol Minist Educ Key Lab Computat Intelligence & Chinese Informat P Taiyuan 030006 Shanxi Peoples R China Taiyuan Univ Technol Key Lab Coal Sci & Technol Shanxi Prov Taiyuan 030024 Shanxi Peoples R China
Graph contrastive learning (GCL) is one of the mainstream techniques for unsupervised graph representation learning, which reduces the distance between positive pairs and increases the distance between negative pairs ... 详细信息
来源: 评论
Multi-instance positive and unlabeled learning with bi-level embedding
收藏 引用
INTELLIGENT DATA ANALYSIS 2022年 第3期26卷 659-678页
作者: Tang, Xijia Xu, Chao Luo, Tingjin Hou, Chenping Natl Univ Def Technol Dept Syst Sci Changsha Peoples R China
Multiple Instance learning (MIL) is a widely studied learning paradigm which arises from real applications. Existing MIL methods have achieved prominent performances under the premise of plenty annotation data. Nevert... 详细信息
来源: 评论