咨询与建议

限定检索结果

文献类型

  • 231 篇 期刊文献
  • 124 篇 会议
  • 9 篇 学位论文

馆藏范围

  • 364 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 276 篇 工学
    • 239 篇 计算机科学与技术...
    • 68 篇 电气工程
    • 42 篇 控制科学与工程
    • 22 篇 软件工程
    • 19 篇 信息与通信工程
    • 5 篇 交通运输工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 船舶与海洋工程
  • 99 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 85 篇 理学
    • 59 篇 数学
    • 12 篇 物理学
    • 9 篇 生物学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 海洋科学
  • 18 篇 经济学
    • 13 篇 应用经济学
    • 6 篇 理论经济学
  • 16 篇 教育学
    • 15 篇 心理学(可授教育学...
  • 16 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 364 篇 preference learn...
  • 14 篇 ranking
  • 13 篇 machine learning
  • 13 篇 active learning
  • 11 篇 reinforcement le...
  • 11 篇 recommender syst...
  • 11 篇 label ranking
  • 10 篇 multiple criteri...
  • 9 篇 collaborative fi...
  • 9 篇 multiple criteri...
  • 7 篇 classification
  • 6 篇 learning to rank
  • 6 篇 pairwise compari...
  • 6 篇 multiple criteri...
  • 6 篇 ordinal classifi...
  • 6 篇 emotion recognit...
  • 6 篇 decision analysi...
  • 6 篇 multiple criteri...
  • 5 篇 pattern mining
  • 5 篇 deep learning

机构

  • 8 篇 poznan univ tech...
  • 6 篇 poznan univ tech...
  • 5 篇 univ malta inst ...
  • 5 篇 poznan univ tech...
  • 5 篇 sichuan univ bus...
  • 4 篇 univ mons fac po...
  • 3 篇 georgia inst tec...
  • 3 篇 univ paris sacla...
  • 3 篇 rmit univ sch sc...
  • 3 篇 univ marburg dep...
  • 3 篇 univ malta inst ...
  • 3 篇 univ marburg dep...
  • 3 篇 univ portsmouth ...
  • 3 篇 univ oviedo ctr ...
  • 3 篇 univ alberta dep...
  • 3 篇 paderborn univ d...
  • 3 篇 shenzhen univ co...
  • 3 篇 polish acad sci ...
  • 2 篇 polish acad sci ...
  • 2 篇 univ oviedo dept...

作者

  • 19 篇 kadzinski milosz
  • 16 篇 huellermeier eyk...
  • 15 篇 yannakakis georg...
  • 11 篇 mousseau vincent
  • 8 篇 diez jorge
  • 8 篇 liapis antonios
  • 7 篇 busso carlos
  • 7 篇 pirlot marc
  • 7 篇 ouerdane wassila
  • 7 篇 luaces oscar
  • 7 篇 slowinski roman
  • 7 篇 fuernkranz johan...
  • 6 篇 sobrie olivier
  • 6 篇 liao huchang
  • 6 篇 belahcene khaled
  • 6 篇 alfaro juan c.
  • 5 篇 melhart david
  • 5 篇 gamez jose a.
  • 5 篇 bahamonde antoni...
  • 5 篇 tomczyk michal k...

语言

  • 354 篇 英文
  • 10 篇 其他
检索条件"主题词=Preference Learning"
364 条 记 录,以下是71-80 订阅
排序:
CONTEXT-AWARE preference learning SYSTEM BASED ON DIRICHLET PROCESS GAUSSIAN MIXTURE MODEL  49
CONTEXT-AWARE PREFERENCE LEARNING SYSTEM BASED ON DIRICHLET ...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xu, Xianbo van Erp, Bart Ignatenko, Tanya Eindhoven Univ Technol Dept Elect Engn Eindhoven Netherlands GN Hearing Res & Technol Eindhoven Netherlands
We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmenta... 详细信息
来源: 评论
Few-Shot preference learning for Human-in-the-Loop RL  6
Few-Shot Preference Learning for Human-in-the-Loop RL
收藏 引用
6th Conference on Robot learning (CoRL)
作者: Hejna, Joey Sadigh, Dorsa Stanford Univ Stanford CA 94305 USA
While reinforcement learning (RL) has become a more popular approach for robotics, designing sufficiently informative reward functions for complex tasks has proven to be extremely difficult due their inability to capt... 详细信息
来源: 评论
Bayesian preference learning for Interactive Multi-objective Optimisation
Bayesian Preference Learning for Interactive Multi-objective...
收藏 引用
2nd Genetic and Evolutionary Computation Conference (GECCO)
作者: Taylor, Kendall Ha, Huong Li, Minyi Chan, Jeffrey Li, Xiaodong RMIT Univ Sch Comp Technol Melbourne Vic Australia
This work proposes a Bayesian optimisation with Gaussian Process approach to learn decision maker (DM) preferences in the attribute search space of a multi-objective optimisation problem (MOP). The DM is consulted per... 详细信息
来源: 评论
Dealing with Intransitivity, Non-Convexity, and Algorithmic Bias in preference learning
Dealing with Intransitivity, Non-Convexity, and Algorithmic ...
收藏 引用
作者: Bower, Amanda University of Michigan
学位级别:Ph.D., Doctor of Philosophy
Rankings are ubiquitous since they are a natural way to present information to people who are making decisions. There are seemingly countless scenarios where rankings arise, such as deciding whom to hire at a company,... 详细信息
来源: 评论
Multi-criteria Recommendations through preference learning  17
Multi-criteria Recommendations through Preference Learning
收藏 引用
4th ACM IKDD Conferences on Data Sciences (CODS)
作者: Sreepada, Rama Syamala Patra, Bidyut Kr. Hernando, Antonio Natl Inst Technol Rourkela Rourkela 769008 Odisha India Univ Politecn Madrid E-28040 Madrid Spain
In today's internet era, recommender system (RS) addresses information overload problem, which is common in many information driven domains. RS helps users chose a set of appropriate options from a plethora of opt... 详细信息
来源: 评论
A preference learning System for the Autonomous Selection and Personalization of Entertainment Activities during Human-Robot Interaction
A Preference Learning System for the Autonomous Selection an...
收藏 引用
IEEE International Conference on Development and learning (ICDL)
作者: Maroto-Gomez, Marcos Marques Villarroya, Sara Malfaz, Maria Castro-Gonzalez, Alvaro Carlos Castillo, Jose Angel Salichs, Miguel Univ Carlos III Syst Engn & Automat Madrid Spain
Social robots assisting in cognitive stimulation therapies, physical rehabilitation, or entertainment sessions have gained visibility in the last years. In these activities, users may present different features and ne... 详细信息
来源: 评论
Implementation of medical image retrieval algorithm based on preference learning model  4
Implementation of medical image retrieval algorithm based on...
收藏 引用
4th IEEE International Conference on Power, Electronics and Computer Applications, ICPECA 2024
作者: Chen, Yaqi Luo, Chan He, Zijie Shu, Zhong School of Electronic Information Engineering Jingchu University of Technology Hubei Jingmen China Jingmen Rongmedia Network Technology Co. Ltd Hubei Jingmen China
This paper utilizes the Stacked Denoising Auto Encoder (SDAE) model to capture the general edge features of images. Additionally, it employs the Convolutional Neural Networks model to extract fine edge features from m... 详细信息
来源: 评论
Dealing with Intransitivity, Non-Convexity, and Algorithmic Bias in preference learning
Dealing with Intransitivity, Non-Convexity, and Algorithmic ...
收藏 引用
作者: Bower, Amanda Ruth University of Michigan
Rankings are ubiquitous since they are a natural way to present information to people who are making decisions. There are seemingly countless scenarios where rankings arise, such as deciding whom to hire at a company,... 详细信息
来源: 评论
Online Personalized preference learning Method Based on In-Formative Query for Lane Centering Control Trajectory
收藏 引用
SENSORS 2023年 第11期23卷 5246页
作者: Ran, Wei Chen, Hui Xia, Taokai Nishimura, Yosuke Guo, Chaopeng Yin, Youyu Tongji Univ Sch Automot Studies Shanghai 201804 Peoples R China JTEKT Corp Nara 6348555 Japan JTEKT Res & Dev Ctr WUXI Co Ltd Wuxi 214161 Peoples R China
The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approac... 详细信息
来源: 评论
An active preference learning approach to aid the selection of validators in blockchain environments
收藏 引用
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE 2023年 118卷
作者: Gehrlein, Jonas Miebs, Grzegorz Brunelli, Matteo Kadzinski, Milosz Web3 Fdn Zug Switzerland Poznati Univ Technol Inst Comp Sci Piotrowo 2 PL-60965 Poznan Poland Univ Trento Dept Ind Engn Trento Italy
We consider a real-world problem faced in some blockchain ecosystems that select their active validators-the actors that maintain the blockchain-from a larger set of candidates through an electionbased mechanism. Spec... 详细信息
来源: 评论