咨询与建议

限定检索结果

文献类型

  • 95 篇 期刊文献
  • 95 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 192 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 167 篇 计算机科学与技术...
    • 59 篇 电气工程
    • 46 篇 信息与通信工程
    • 23 篇 软件工程
    • 6 篇 控制科学与工程
    • 4 篇 网络空间安全
    • 3 篇 电子科学与技术(可...
    • 3 篇 石油与天然气工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 15 篇 理学
    • 8 篇 数学
    • 6 篇 化学
    • 5 篇 物理学
    • 2 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 8 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 2 篇 中西医结合
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 1 篇 外国语言文学
    • 1 篇 新闻传播学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 192 篇 privacy-preservi...
  • 40 篇 homomorphic encr...
  • 26 篇 federated learni...
  • 20 篇 deep learning
  • 16 篇 fully homomorphi...
  • 15 篇 data models
  • 13 篇 privacy
  • 13 篇 cryptography
  • 12 篇 neural networks
  • 12 篇 differential pri...
  • 12 篇 machine learning
  • 12 篇 training
  • 11 篇 data privacy
  • 10 篇 computational mo...
  • 9 篇 secure computati...
  • 8 篇 secret sharing
  • 8 篇 secure multi-par...
  • 8 篇 servers
  • 7 篇 edge computing
  • 7 篇 multi-party comp...

机构

  • 4 篇 cispa helmholtz ...
  • 3 篇 univ amsterdam
  • 3 篇 seoul natl univ
  • 3 篇 zhejiang univ pe...
  • 3 篇 univ calif river...
  • 3 篇 cunef univ madri...
  • 2 篇 seoul natl univ ...
  • 2 篇 georgia state un...
  • 2 篇 nanjing univ aer...
  • 2 篇 shanghai key lab...
  • 2 篇 east china norma...
  • 2 篇 harbin inst tech...
  • 2 篇 harbin inst tech...
  • 2 篇 jinan univ peopl...
  • 2 篇 univ windsor sch...
  • 2 篇 univ autonoma ch...
  • 2 篇 microsoft res re...
  • 2 篇 seoul natl univ ...
  • 2 篇 swiss fed inst t...
  • 2 篇 shandong normal ...

作者

  • 4 篇 mann zoltan adam
  • 4 篇 salmeron jose l.
  • 4 篇 arevalo irina
  • 3 篇 choi jina
  • 3 篇 mohammed noman
  • 3 篇 frimpong eugene
  • 3 篇 khan tanveer
  • 3 篇 lee eunsang
  • 3 篇 li qiang
  • 3 篇 takabi daniel
  • 3 篇 chen chaochao
  • 3 篇 li hongwei
  • 3 篇 guler basak
  • 3 篇 kim young-sik
  • 3 篇 no jong-seon
  • 3 篇 dathathri roshan
  • 3 篇 lee joon-woo
  • 3 篇 michalas antonis
  • 3 篇 lee younho
  • 3 篇 zhang yang

语言

  • 190 篇 英文
  • 2 篇 其他
检索条件"主题词=Privacy-Preserving Machine Learning"
192 条 记 录,以下是1-10 订阅
排序:
privacy-preserving machine learning in Cloud-Edge-End Collaborative Environments
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第1期12卷 419-434页
作者: Yang, Wenbo Wang, Hao Li, Zhi Niu, Ziyu Wu, Lei Wei, Xiaochao Su, Ye Susilo, Willy Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China Univ Wollongong Sch Comp & Informat Technol Wollongong NSW 2522 Australia
We propose a privacy-preserving machine learning scheme based on the cloud-edge-end architecture to address issues like weak computing power of Internet of Things (IoT) terminals, poor communication quality, and heavy... 详细信息
来源: 评论
privacy-preserving machine learning (PPML) Inference for Clinically Actionable Models
收藏 引用
IEEE ACCESS 2025年 13卷 37431-37456页
作者: Balaban, Baris Magara, Seyma Selcan Yilgor, Caglar Yucekul, Altug Obeid, Ibrahim Pizones, Javier Kleinstueck, Frank Perez-Grueso, Francisco Javier Sanchez Pellise, Ferran Alanay, Ahmet Savas, Erkay Bagci, Cetin Sezerman, Osman Ugur European Spine Study Group, European Spine Study Acibadem Mehmet Ali Aydinlar Univ Inst Hlth Sci Dept Biostat & Bioinformat TR-34638 Istanbul Turkiye Sabanci Univ Dept Comp Sci & Engn TR-34956 Istanbul Turkiye Univ Tubingen Dept Comp Sci D-72074 Tubingen Germany Acibadem Univ Dept Orthoped & Traumatol Sch Med TR-34750 Istanbul Turkiye Elsan Jean Villar Private Hosp Clin Dos F-33520 Bordeaux France Hosp Univ La Paz Spine Surg Unit Madrid 28046 Spain Schulthess Klin Spine Ctr Div Dept Orthoped & Neurosurg CH-8008 Zurich Switzerland Hosp Univ Vall Hebron Spine Surg Unit Barcelona 08035 Spain Bilmed Comp & Software Co TR-34742 Istanbul Turkiye
machine learning (ML) refers to algorithms (often models) that are learned directly from data, germane to past experience. As algorithms have constantly been evolving with the exponential increase of computing power a... 详细信息
来源: 评论
privacy-preserving machine learning With Fully Homomorphic Encryption for Deep Neural Network
收藏 引用
IEEE ACCESS 2022年 10卷 30039-30054页
作者: Lee, Joon-Woo Kang, Hyungchul Lee, Yongwoo Choi, Woosuk Eom, Jieun Deryabin, Maxim Lee, Eunsang Lee, Junghyun Yoo, Donghoon Kim, Young-Sik No, Jong-Seon Seoul Natl Univ Dept Elect & Comp Engn INMC Seoul 08826 South Korea Samsung Adv Inst Technol Suwon 16678 South Korea Chosun Univ Dept Informat & Commun Engn Gwangju 61452 South Korea
Fully homomorphic encryption (FHE) is a prospective tool for privacy-preserving machine learning (PPML). Several PPML models have been proposed based on various FHE schemes and approaches. Although FHE schemes are sui... 详细信息
来源: 评论
IDPriU: A two-party ID-private data union protocol for privacy-preserving machine learning
收藏 引用
JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 2025年 88卷
作者: Yan, Jianping Wei, Lifei Qian, Xiansong Zhang, Lei Shanghai Maritime Univ Coll Informat Engn Shanghai 201306 Peoples R China Shanghai Ocean Univ Coll Informat Technol Shanghai 201306 Peoples R China
Due to significant data security concerns in machine learning, such as the data silo problem, there has been a growing trend towards the development of privacy-preserving machine learning applications. The initial ste... 详细信息
来源: 评论
Approximate homomorphic encryption based privacy-preserving machine learning: a survey
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2025年 第3期58卷 1-49页
作者: Yuan, Jiangjun Liu, Weinan Shi, Jiawen Li, Qingqing Hangzhou Vocat & Tech Coll Business & Tourism Inst Hangzhou 310018 Zhejiang Peoples R China Hangzhou City Univ Supercomp Ctr Hangzhou 310000 Zhejiang Peoples R China
machine learning (ML) is rapidly advancing, enabling various applications that improve people's work and daily lives. However, this technical progress brings privacy concerns, leading to the emergence of privacy-P... 详细信息
来源: 评论
Efficient Dropout-Resilient Aggregation for privacy-preserving machine learning
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2023年 18卷 1839-1854页
作者: Liu, Ziyao Guo, Jiale Lam, Kwok-Yan Zhao, Jun Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore
machine learning (ML) has been widely recognized as an enabler of the global trend of digital transformation. With the increasing adoption of data-hungry machine learning algorithms, personal data privacy has emerged ... 详细信息
来源: 评论
GuardML: Efficient privacy-preserving machine learning Services Through Hybrid Homomorphic Encryption  24
GuardML: Efficient Privacy-Preserving Machine Learning Servi...
收藏 引用
39th Annual ACM Symposium on Applied Computing (SAC)
作者: Frimpong, Eugene Nguyen, Khoa Budzys, Mindaugas Khan, Tanveer Michalas, Antonis Tampere Univ Tampere Finland
machine learning (ML) has emerged as one of data science's most transformative and influential domains. However, the widespread adoption of ML introduces privacy-related concerns owing to the increasing number of ... 详细信息
来源: 评论
Client-Aided privacy-preserving machine learning  14th
Client-Aided Privacy-Preserving Machine Learning
收藏 引用
14th International Conference on Security and Cryptography for Networks (SCN)
作者: Miao, Peihan Shi, Xinyi Wu, Chao Xu, Ruofan Brown Univ Providence RI 02912 USA Univ Calif Riverside Riverside CA USA Univ Illinois Urbana IL USA
privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly train ML models on their private data without revealing any information beyond the final trained models. In this work, we stud... 详细信息
来源: 评论
A Pervasive, Efficient and Private Future: Realizing privacy-preserving machine learning Through Hybrid Homomorphic Encryption  22
A Pervasive, Efficient and Private Future: Realizing Privacy...
收藏 引用
2024 IEEE Conference on Dependable, Autonomic and Secure Computing
作者: Khoa Nguyen Budzys, Mindaugas Frimpong, Eugene Khan, Tanveer Michalas, Antonis Tampere Univ Dept Comp Sci Tampere Finland RISE Res Inst Sweden Gothenburg Sweden
machine learning (ML) has become one of the most impactful fields of data science in recent years. However, a significant concern with ML is its privacy risks due to rising attacks against ML models. privacy-Preservin... 详细信息
来源: 评论
Optimizing the Parameters of Pipelined Multi-party Computation for privacy-preserving machine learning Applications  59
Optimizing the Parameters of Pipelined Multi-party Computati...
收藏 引用
59th Annual IEEE International Conference on Communications (IEEE ICC)
作者: Hernandez, Richard Bautista, Oscar G. Akkaya, Kemal Florida Int Univ Adv Wireless & Secur Lab Miami FL 33199 USA
Cloud Service Providers (CSPs) have recently significantly improved, allowing for outsourcing machine learning (ML) training and inference. However, due to the data privacy needs in most of the ML applications, severa... 详细信息
来源: 评论