咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 24 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 67 篇 工学
    • 49 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 8 篇 控制科学与工程
    • 4 篇 软件工程
    • 2 篇 信息与通信工程
    • 2 篇 测绘科学与技术
    • 2 篇 生物工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 生物医学工程(可授...
  • 17 篇 医学
    • 12 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 12 篇 理学
    • 4 篇 物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 地球物理学
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 73 篇 probabilistic ge...
  • 8 篇 probabilistic lo...
  • 4 篇 recommender syst...
  • 4 篇 classification
  • 3 篇 image fusion
  • 3 篇 cold start
  • 3 篇 single-channel s...
  • 3 篇 recurrent neural...
  • 3 篇 location-based s...
  • 3 篇 machine learning
  • 3 篇 electronic healt...
  • 3 篇 bayesian network
  • 3 篇 non-negative mat...
  • 3 篇 hyperspectral im...
  • 2 篇 brain reference ...
  • 2 篇 super-resolution
  • 2 篇 experimentation
  • 2 篇 performance
  • 2 篇 reinforcement le...
  • 2 篇 clustering

机构

  • 4 篇 xidian univ natl...
  • 3 篇 mcgill univ dept...
  • 3 篇 sherbrooke univ ...
  • 2 篇 ritsumeikan univ...
  • 2 篇 southwest univ f...
  • 2 篇 beijing univ pos...
  • 2 篇 univ queensland ...
  • 2 篇 beijing univ pos...
  • 2 篇 xidian univ coll...
  • 2 篇 univ technol syd...
  • 2 篇 univ technol qci...
  • 2 篇 syracuse univ de...
  • 2 篇 minist educ key ...
  • 2 篇 ritsumeikan univ...
  • 2 篇 northeastern uni...
  • 2 篇 tsinghua univ de...
  • 2 篇 peking univ sch ...
  • 1 篇 univ queensland ...
  • 1 篇 natl inst inform...
  • 1 篇 univ edinburgh s...

作者

  • 8 篇 taniguchi akira
  • 8 篇 taniguchi tadahi...
  • 6 篇 yin hongzhi
  • 5 篇 cui bin
  • 5 篇 chen bo
  • 4 篇 liu hongwei
  • 4 篇 hu zhiting
  • 4 篇 chen ling
  • 4 篇 zhang yujie
  • 4 篇 yamakawa hiroshi
  • 4 篇 meng xiangwu
  • 3 篇 hagiwara yoshino...
  • 3 篇 wang zhengjue
  • 3 篇 champagne benoit
  • 3 篇 chung hanwook
  • 3 篇 plourde eric
  • 3 篇 lu ruiying
  • 3 篇 zhang hao
  • 2 篇 ohmuro hitoshi
  • 2 篇 lozano jose a.

语言

  • 69 篇 英文
  • 4 篇 其他
检索条件"主题词=Probabilistic Generative Model"
73 条 记 录,以下是41-50 订阅
排序:
Inductive Multi-View Semi-Supervised Anomaly Detection via probabilistic modeling  10
Inductive Multi-View Semi-Supervised Anomaly Detection via P...
收藏 引用
10th IEEE International Conference on Big Knowledge (ICBK)
作者: Wang, Zhen Fan, Maohong Muknahallipatna, Suresh Lan, Chao Univ Wyoming Dept Comp Sci Laramie WY 82071 USA Univ Wyoming Dept Chem Engn Laramie WY 82071 USA Univ Wyoming Dept Elect & Comp Engn Laramie WY 82071 USA
This paper considers anomaly detection with multiview data. Unlike traditional detection on single-view data which identifies anomalies based on inconsistency between instances, multi-view anomaly detection identifies... 详细信息
来源: 评论
Training and compensation of class-conditioned NMF bases for speech enhancement
收藏 引用
NEUROCOMPUTING 2018年 284卷 107-118页
作者: Chung, Hanwook Badeau, Roland Plourde, Eric Champagne, Benoit McGill Univ Dept Elect & Comp Engn Montreal PQ Canada Univ Paris Saclay Telecom ParisTech LTCI F-75013 Paris France Sherbrooke Univ Dept Elect & Comp Engn Sherbrooke PQ Canada
In this paper, we introduce a training and compensation algorithm of the class-conditioned basis vectors in the non-negative matrix factorization (NMF) model for single-channel speech enhancement. The main goal is to ... 详细信息
来源: 评论
A Network Embedding-Enhanced Approach for Generalized Community Detection  11th
A Network Embedding-Enhanced Approach for Generalized Commun...
收藏 引用
11th International Conference on Knowledge Science, Engineering and Management (KSEM)
作者: He, Dongxiao Yang, Xue Feng, Zhiyong Chen, Shizhan Fogelman-Soulie, Francoise Tianjin Univ Tianjin Key Lab Cognit Comp & Applicat Tianjin 300350 Peoples R China Tianjin Univ Sch Comp Sci & Technol Tianjin 300350 Peoples R China Tianjin Univ Sch Comp Software Tianjin 300350 Peoples R China
Community detection is one of the most important tasks in network analysis. Many community detection methods have been proposed recently. However, they typically focus on assortative community structures (i.e. nodes w... 详细信息
来源: 评论
A SUPERVISED MULTI-CHANNEL SPEECH ENHANCEMENT ALGORITHM BASED ON BAYESIAN NMF model
A SUPERVISED MULTI-CHANNEL SPEECH ENHANCEMENT ALGORITHM BASE...
收藏 引用
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
作者: Chung, Hanwook Plourde, Eric Champagne, Benoit McGill Univ Dept Elect & Comp Engn Montreal PQ Canada Sherbrooke Univ Dept Elect & Comp Engn Sherbrooke PQ Canada
In this paper, we introduce a supervised multi-channel speech enhancement algorithm based on a Bayesian multi-channel non-negative matrix factorization (MNMF) model. In the proposed framework, we consider the probabil... 详细信息
来源: 评论
modeling Patient Visit Using Electronic Medical Records for Cost Profile Estimation  23rd
Modeling Patient Visit Using Electronic Medical Records for ...
收藏 引用
23rd International Conference on Database Systems for Advanced Applications (DASFAA).
作者: Zhao, Kangzhi Zhang, Yong Wang, Zihao Yin, Hongzhi Zhou, Xiaofang Wang, Jin Xing, Chunxiao Tsinghua Univ Inst Internet Ind Dept Comp Sci & Technol RIITTNList Beijing 100084 Peoples R China Univ Queensland Brisbane Qld Australia Univ Calif Los Angeles Comp Sci Dept Los Angeles CA USA
Estimating health care cost of patients provides promising opportunities for better management and treatment to medical providers and patients. Existing clinical approaches only focus on patient's demographics and... 详细信息
来源: 评论
Machine-Learning-Based Approaches for Learning Marketing Strategies
Machine-Learning-Based Approaches for Learning Marketing Str...
收藏 引用
作者: Lin, Yu San PennState University Libraries
学位级别:Doctor of Philosophy
Studying the markets for better business strategies has been a pressing and practical issue. However, there is not enough attention paid into such research field when it comes to precise computational models. In this ... 详细信息
来源: 评论
A survey on trends of cross-media topic evolution map
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2017年 124卷 164-175页
作者: Zhou, Houkui Yu, Huimin Hu, Roland Hu, Junguo Zhejiang Univ Dept Informat Sci & Elect Engn Hangzhou 310027 Zhejiang Peoples R China State Key Lab CAD & CG Hangzhou 310027 Zhejiang Peoples R China Zhejiang A&F Univ Sch Informat Engn Linan 311300 Peoples R China Zhejiang Prov Key Lab Forestry Intelligent Monito Linan 311300 Peoples R China
Rapid advancements in internet and social media technologies have made "information overload" a rampant and widespread problem. Complex subjects, histories, or issues break down into branches, side stories, ... 详细信息
来源: 评论
Multi-label text classification based on the label correlation mixture model
收藏 引用
INTELLIGENT DATA ANALYSIS 2017年 第6期21卷 1371-1392页
作者: He, Zhiyang Wu, Ji Lv, Ping Tsinghua Univ Dept Elect Engn Beijing Peoples R China Tsinghua iFlytek Joint Lab Speech Technol Beijing Peoples R China
In the current paper, we propose a probabilistic generative model, the label correlation mixture model (LCMM), to depict multi-labeled document data, which can be utilized for multi-label text classification. LCMM ass... 详细信息
来源: 评论
Bayesian body schema estimation using tactile information obtained through coordinated random movements
收藏 引用
ADVANCED ROBOTICS 2017年 第3期31卷 118-134页
作者: Mimura, Tomohiro Hagiwara, Yoshinobu Taniguchi, Tadahiro Inamura, Tetsunari Ritsumeikan Univ Grad Sch Sci & Engn Kusatsu Japan Natl Inst Informat Principles Informat Res Div Tokyo Japan Grad Univ Adv Studies Principles Informat Res Div Tokyo Japan
This paper describes a computational model, called the Dirichlet process Gaussian mixture model with latent joints (DPGMM-LJ), that can find latent tree structure embedded in data distribution in an unsupervised manne... 详细信息
来源: 评论
Towards complex activity recognition using a Bayesian network-based probabilistic generative framework
收藏 引用
PATTERN RECOGNITION 2017年 68卷 295-309页
作者: Liu, Li Wang, Shu Su, Guoxin Huang, Zi-Gang Liu, Ming Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400044 Peoples R China Chongqing Univ Sch Software Engn Chongqing 400044 Peoples R China Southwest Univ Fac Mat & Energy Chongqing 400715 Peoples R China Univ Wollongong Sch Comp & Informat Technol Wollongong NSW 2522 Australia Lanzhou Univ Sch Phys Sci & Technol Lanzhou 730000 Peoples R China Southwest Univ Fac Comp & Informat Sci Chongqing 400715 Peoples R China
Complex activity recognition is challenging since a complex activity can be performed in different ways, with each having its own configuration of primitive events and their temporal dependencies. To address such temp... 详细信息
来源: 评论