咨询与建议

限定检索结果

文献类型

  • 159 篇 期刊文献
  • 94 篇 会议
  • 7 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 261 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 225 篇 工学
    • 172 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 24 篇 信息与通信工程
    • 23 篇 控制科学与工程
    • 23 篇 软件工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 6 篇 交通运输工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 测绘科学与技术
    • 5 篇 生物工程
    • 4 篇 安全科学与工程
    • 3 篇 石油与天然气工程
  • 54 篇 理学
    • 16 篇 生物学
    • 13 篇 数学
    • 11 篇 统计学(可授理学、...
    • 7 篇 物理学
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 2 篇 化学
    • 2 篇 地理学
    • 2 篇 海洋科学
    • 2 篇 生态学
  • 27 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 25 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 7 篇 农学
  • 6 篇 经济学
    • 5 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 哲学

主题

  • 261 篇 probabilistic gr...
  • 27 篇 bayesian network
  • 10 篇 belief propagati...
  • 10 篇 probabilistic lo...
  • 9 篇 graphical models
  • 8 篇 factor graph
  • 7 篇 deep learning
  • 7 篇 markov random fi...
  • 7 篇 structure learni...
  • 7 篇 machine learning
  • 5 篇 clustering
  • 5 篇 probability
  • 5 篇 probabilistic in...
  • 5 篇 data models
  • 4 篇 variational infe...
  • 4 篇 truth discovery
  • 4 篇 hidden markov mo...
  • 4 篇 topic modeling
  • 4 篇 bayesian inferen...
  • 4 篇 conditional rand...

机构

  • 3 篇 chengdu univ inf...
  • 3 篇 chengdu univ inf...
  • 3 篇 beihang univ sch...
  • 2 篇 peking univ peop...
  • 2 篇 southeast univ s...
  • 2 篇 china univ min &...
  • 2 篇 korea univ sch i...
  • 2 篇 suny buffalo buf...
  • 2 篇 shandong normal ...
  • 2 篇 college of compu...
  • 2 篇 beijing jiaotong...
  • 2 篇 minist educ key ...
  • 2 篇 tianjin univ col...
  • 2 篇 chongqing univ p...
  • 2 篇 carnegie mellon ...
  • 2 篇 aston univ dept ...
  • 2 篇 colorado state u...
  • 2 篇 beijing jiaotong...
  • 2 篇 nanjing univ fin...
  • 2 篇 umea univ dept c...

作者

  • 4 篇 jiang wei
  • 3 篇 han nan
  • 3 篇 nguyen anh tu
  • 3 篇 wu zhaolin
  • 3 篇 lee young-koo
  • 3 篇 zhang haisu
  • 3 篇 wang qi
  • 3 篇 gao jing
  • 3 篇 xiong xi
  • 3 篇 qiao shaojie
  • 2 篇 zhang tianze
  • 2 篇 he yuan
  • 2 篇 trentin edmondo
  • 2 篇 liu guannan
  • 2 篇 segers johan
  • 2 篇 santana roberto
  • 2 篇 li li
  • 2 篇 rafi muhammad ad...
  • 2 篇 wang xiaoyang
  • 2 篇 peyhardi jean

语言

  • 253 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"主题词=Probabilistic Graphical Model"
261 条 记 录,以下是81-90 订阅
排序:
probabilistic Multigraph modeling for Improving the Quality of Crowdsourced Affective Data
收藏 引用
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2019年 第1期10卷 115-128页
作者: Ye, Jianbo Li, Jia Newman, Michelle G. Adams, Reginald B., Jr. Wang, James Z. Penn State Univ Coll Informat Sci & Technol University Pk PA 16802 USA Penn State Univ Dept Stat University Pk PA 16802 USA Penn State Univ Dept Psychol University Pk PA 16802 USA
We proposed a probabilistic approach to joint modeling of participants' reliability and humans' regularity in crowdsourced affective studies. Reliability measures how likely a subject will respond to a questio... 详细信息
来源: 评论
Affective Impression: Sentiment-Awareness POI Suggestion via Embedding in Heterogeneous LBSNs
收藏 引用
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2022年 第1期13卷 272-284页
作者: Xiong, Xi Qiao, Shaojie Han, Nan Li, Yuanyuan Xiong, Fei He, Ling Chengdu Univ Informat Technol Chengdu 610225 Peoples R China Chengdu Univ Informat Technol Sch Software Engn Chengdu 610225 Peoples R China Chengdu Univ Informat Technol Software Automat Generat & Intelligent Serv Key L Chengdu 610225 Sichuan Peoples R China Chengdu Univ Informat Technol Sch Management Chengdu 610103 Sichuan Peoples R China Sichuan Univ Mental Hlth Ctr West China Sch Med Chengdu 610041 Sichuan Peoples R China Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China Sichuan Univ Coll Elect Engn & Informat Technol Chengdu 610065 Peoples R China
Location-based social networks (LBSNs) add geographical information into traditional social networks and link people's virtual and physical lives. As an important application of LBSNs, point-of-interest (POI) sugg... 详细信息
来源: 评论
A tree conditional random field model for panel detection in comic images
收藏 引用
PATTERN RECOGNITION 2015年 第7期48卷 2129-2140页
作者: Li, Luyuan Wang, Yongtao Suen, Ching Y. Tang, Zhi Liu, Dong Peking Univ Beijing 100871 Peoples R China Concordia Univ Montreal PQ H3G 1M8 Canada
The goal of panel detection is to decompose the comic image into several panels (or frames), which is the fundamental step to produce digital comic books that are suitable for reading on mobile devices. The existing m... 详细信息
来源: 评论
modelling-based joint embedding of histology and genomics using canonical correlation analysis for breast cancer survival prediction
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2024年 149卷 102787-102787页
作者: Subramanian, Vaishnavi Syeda-Mahmood, Tanveer Do, Minh N. Univ Illinois Elect & Comp Engn Urbana IL 61801 USA IBM Res Almaden San Jose CA 95120 USA
Traditional approaches to predicting breast cancer patients' survival outcomes were based on clinical subgroups, the PAM50 genes, or the histological tissue's evaluation. With the growth of multi -modality dat... 详细信息
来源: 评论
We Know Who You Are: Discovering Similar Groups Across Multiple Social Networks
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2020年 第7期50卷 2693-2704页
作者: Liu, Xiaoming Shen, Chao Guan, Xiaohong Zhou, Yadong Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China
People use various online social networks for different purposes. The user information on each social network is usually partial. Thus, matching the users across these multiple online social networks is of great signi... 详细信息
来源: 评论
Context augmented Dynamic Bayesian Networks for event recognition
收藏 引用
PATTERN RECOGNITION LETTERS 2014年 第Jul.1期43卷 62-70页
作者: Wang, Xiaoyang Ji, Qiang Rensselaer Polytech Inst Dept ECSE Troy NY 12180 USA
This paper proposes a new probabilistic graphical model (PGM) to incorporate the scene, event object interaction, and the event temporal contexts into Dynamic Bayesian Networks (DBNs) for event recognition in surveill... 详细信息
来源: 评论
Combining intensional with extensional query evaluation in tuple independent probabilistic databases
收藏 引用
INFORMATION SCIENCES 2011年 第4期181卷 812-831页
作者: Qin, Biao Wang, Shan Renmin Univ China MOE Key Lab Data Engn & Knowledge Engn Beijing 100872 Peoples R China Renmin Univ China Sch Informat Beijing 100872 Peoples R China
In this paper, we prove that a query plan is safe in tuple independent probabilistic databases if and only if its every answer tuple is tree structured in probabilistic graphical models. We classify hierarchical queri... 详细信息
来源: 评论
Multi-task Sparse Structure Learning with Gaussian Copula models
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2016年 第1期17卷 1-30页
作者: Goncalves, Andre R. Von Zuben, Fernando J. Banerjee, Arindam Univ Estadual Campinas Sch Elect & Comp Engn Sao Paulo Brazil Univ Minnesota Twin Cities Dept Comp Sci Minneapolis MN USA
Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously. While sometimes the underlying task relationship structure is known, often the structure needs to... 详细信息
来源: 评论
Geometric Matrix Completion With Deep Conditional Random Fields
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020年 第9期31卷 3579-3593页
作者: Nguyen, Duc Minh Calderbank, Robert Deligiannis, Nikos Vrije Univ Brussel Dept Elect & Informat B-1050 Brussels Belgium Duke Univ Dept Elect & Comp Engn Durham NC 27708 USA
The problem of completing high-dimensional matrices from a limited set of observations arises in many big data applications, especially recommender systems. The existing matrix completion models generally follow eithe... 详细信息
来源: 评论
Temporal probabilistic measure for link prediction in collaborative networks
收藏 引用
APPLIED INTELLIGENCE 2017年 第1期47卷 83-95页
作者: Lakshmi, T. Jaya Bhavani, S. Durga Univ Hyderabad Sch Comp & Informat Sci Hyderabad Andhra Pradesh India Vasireddy Venkatadri Inst Technol Nambur Guntur India
Link prediction addresses the problem of finding potential links that may form in the future. Existing state of art techniques exploit network topology for computing probability of future link formation. We are intere... 详细信息
来源: 评论