咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是91-100 订阅
排序:
Generic Tracking and probabilistic Prediction Framework and Its Application in Autonomous Driving
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2020年 第9期21卷 3634-3649页
作者: Li, Jiachen Zhan, Wei Hu, Yeping Tomizuka, Masayoshi Univ Calif Berkeley Dept Mech Engn Berkeley CA 94720 USA
Accurately tracking and predicting behaviors of surrounding objects are key prerequisites for intelligent systems such as autonomous vehicles to achieve safe and high-quality decision making and motion planning. Howev... 详细信息
来源: 评论
A nonparametric belief propagation method for uncertainty quantification with applications to flow in random porous media
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2013年 250卷 616-643页
作者: Chen, Peng Zabaras, Nicholas Cornell Univ Sibley Sch Mech & Aerosp Engn Mat Proc Design & Control Lab Ithaca NY 14853 USA Cornell Univ Ctr Appl Math Ithaca NY 14853 USA
A probabilistic graphical model approach to uncertainty quantification for flows in random porous media is introduced. Model reduction techniques are used locally in the graph to represent the random permeability. The... 详细信息
来源: 评论
Latent Hierarchical Model for Activity Recognition
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2015年 第6期31卷 1472-1482页
作者: Hu, Ninghang Englebienne, Gwenn Lou, Zhongyu Krose, Ben Univ Amsterdam Inst Informat NL-1098 XH Amsterdam Netherlands
We present a novel hierarchical model for human activity recognition. In contrast with approaches that successively recognize actions and activities, our approach jointly models actions and activities in a unified fra... 详细信息
来源: 评论
Sum-product graphical models
收藏 引用
MACHINE LEARNING 2020年 第1期109卷 135-173页
作者: Desana, Mattia Schnoerr, Christoph Heidelberg Univ Heidelberg Collaboratory Image Proc HCI Heidelberg Germany Heidelberg Univ Image & Pattern Anal Grp IPA Heidelberg Germany
This paper introduces a probabilistic architecture called sum-product graphical model (SPGM). SPGMs represent a class of probability distributions that combines, for the first time, the semantics of probabilistic grap... 详细信息
来源: 评论
Exploiting semantic knowledge for robot object recognition
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2015年 第Sep.期86卷 131-142页
作者: Ruiz-Sarmiento, Jose-Raul Galindo, Cipriano Gonzalez-Jimenez, Javier Univ Malaga Syst Engn & Automat Dept E-29071 Malaga Spain
This paper presents a novel approach that exploits semantic knowledge to enhance the object recognition capability of autonomous robots. Semantic knowledge is a rich source of information, naturally gathered from huma... 详细信息
来源: 评论
An AI-based system for pricing diverse products and services
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2010年 第4期23卷 357-362页
作者: Shakya, S. Chin, C. M. Owusu, G. BT Innovate & Design Intelligent Syst Res Ctr Ipswich IP5 3RE Suffolk England
This paper describes an applied research work that looks at different ways to effectively manage resources Particularly, it describes how revenue management techniques can be used to balance demand against capacity, a... 详细信息
来源: 评论
Large-scale empirical validation of Bayesian Network structure learning algorithms with noisy data
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2021年 131卷 151-188页
作者: Constantinou, Anthony C. Liu, Yang Chobtham, Kiattikun Guo, Zhigao Kitson, Neville K. Queen Mary Univ London QMUL Sch EECS Bayesian Artificial Intelligence Res Lab Risk & Informat Management RIM Res Grp London E1 4NS England Alan Turing Inst British Lib 96 Euston Rd London NW1 2DB England
Numerous Bayesian Network (BN) structure learning algorithms have been proposed in the literature over the past few decades. Each publication makes an empirical or theoretical case for the algorithm proposed in that p... 详细信息
来源: 评论
Affective Video Content Analysis via Multimodal Deep Quality Embedding Network
收藏 引用
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2022年 第3期13卷 1401-1415页
作者: Zhu, Yaochen Chen, Zhenzhong Wu, Feng Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430072 Hubei Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230052 Anhui Peoples R China
The establishment of large video affective content analysis datasets, such as LIRIS-ACCEDE, opens up the possibility of utilizing the massive representation power of deep neural networks (DNNs) to model the complex pr... 详细信息
来源: 评论
Modelling spatial and temporal changes with GIS and Spatial and Dynamic Bayesian Networks
收藏 引用
ENVIRONMENTAL MODELLING & SOFTWARE 2016年 82卷 108-120页
作者: Chee, Yung En Wilkinson, Lauchlin Nicholson, Ann E. Quintana-Ascencio, Pedro F. Fauth, John E. Hall, Dianne Ponzio, Kimberli J. Rumpff, Libby Univ Melbourne Sch Biosci Parkville Vic 3010 Australia Univ Melbourne Sch Ecosyst & Forest Sci 500 Yarra Blvd Burnley Vic 3121 Australia Monash Univ Fac Informat Technol POB 197 Caulfield Vic 3145 Australia Univ Cent Florida Dept Biol 4000 Cent Florida Blvd Orlando FL 32816 USA St Johns River Water Management Dist Div Water Resources POB 1429 Palatka FL 32178 USA
State-and-transition models (STMs) have been successfully combined with Dynamic Bayesian Networks (DBNs) to model temporal changes in managed ecosystems. Such models are useful for exploring when and how to intervene ... 详细信息
来源: 评论
Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2016年 56卷 197-208页
作者: Constantinou, Anthony Costa Fenton, Norman Neil, Martin Queen Mary Univ London Sch Elect Engn & Comp Sci Risk & Informat Management RIM Res Grp London E1 4NS England Agena Ltd Cambridge CB23 7NU England
When developing a causal probabilistic model, i.e. a Bayesian network (BN), it is common to incorporate expert knowledge of factors that are important for decision analysis but where historical data are unavailable or... 详细信息
来源: 评论