咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是141-150 订阅
排序:
Identifying prescription patterns with a topic model of diseases and medications
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2017年 75卷 35-47页
作者: Park, Sungrae Choi, Doosup Kim, Minki Cha, Wonchul Kim, Chuhyun Moon, Il-Chul Korea Adv Inst Sci & Technol Dept Ind & Syst Engn Daejeon South Korea Korea Adv Inst Sci & Technol Coll Business Seoul South Korea Samsung Med Ctr Dept Emergency Med Seoul South Korea Inje Univ Dept Emergency Med Coll Med Seoul South Korea SeoulPaik Hosp Seoul South Korea
Wide variance exists among individuals and institutions for treating patients with medicine. This paper analyzes prescription patterns using a topic model with more than four million prescriptions. Specifically, we pr... 详细信息
来源: 评论
A Bayesian network model for surface roughness prediction in the machining process
收藏 引用
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 2008年 第12期39卷 1181-1192页
作者: Correa, M. Bielza, C. Ramirez, M. de J. Alique, J. R. CSIC Dept Informat Ind Inst Automat Ind Madrid Spain Univ Politecn Madrid Dept Inteligencia Artificial Madrid Spain ITESM Dept Mecatron & Automatiz Monterrey Mexico
The literature reports many scientific works on the use of artificial intelligence techniques such as neural networks or fuzzy logic to predict surface roughness. This article aims at introducing Bayesian network-base... 详细信息
来源: 评论
Self-Similar Magneto-Electric Nanocircuit Technology for probabilistic Inference Engines
收藏 引用
IEEE TRANSACTIONS ON NANOTECHNOLOGY 2015年 第6期14卷 980-991页
作者: Khasanvis, Santosh Li, Mingyu Rahman, Mostafizur Salehi-Fashami, Mohammad Biswas, Ayan K. Atulasimha, Jayasimha Bandyopadhyay, Supriyo Moritz, Csaba Andras Univ Massachusetts Amherst MA 01002 USA Virginia Commonwealth Univ Richmond VA 23284 USA
probabilistic graphical models are powerful mathematical formalisms for machine learning and reasoning under uncertainty that are widely used for cognitive computing. However, they cannot be employed efficiently for l... 详细信息
来源: 评论
Efficient Attack Graph Analysis through Approximate Inference
收藏 引用
ACM TRANSACTIONS ON PRIVACY AND SECURITY 2017年 第3期20卷 10.1-10.1页
作者: Munoz-Gonzalez, Luis Sgandurra, Daniele Paudice, Andrea Lupu, Emil C. Imperial Coll London Dept Comp 180 Queens Gate London SW7 2AZ England Royal Holloway Univ London Informat Secur Grp Egham TW20 0EX Surrey England
Attack graphs provide compact representations of the attack paths an attacker can follow to compromise network resources from the analysis of network vulnerabilities and topology. These representations are a powerful ... 详细信息
来源: 评论
A Bayesian network for combining descriptors: application to symbol recognition
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION 2010年 第1期13卷 65-75页
作者: Barrat, Sabine Tabbone, Salvatore Univ Nancy 2 LORIA UMR 7503 F-54506 Vandoeuvre Les Nancy France
In this paper, we propose a descriptor combination method, which enables to improve significantly the recognition rate compared to the recognition rates obtained by each descriptor. This approach is based on a probabi... 详细信息
来源: 评论
Improving Bayesian Network Structure Learning in the Presence of Measurement Error
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-28页
作者: Liu, Yang Constantinou, Anthony C. Guo, Zhigao Queen Mary Univ London Sch Elect Engn & Comp Sci London E1 4NS England Alan Turing Inst London NW1 2DB England
Structure learning algorithms that learn the graph of a Bayesian network from observational data often do so by assuming the data correctly reflect the true distribution of the variables. However, this assumption does... 详细信息
来源: 评论
Understanding disease processes by partitioned dynamic Bayesian networks
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2016年 61卷 283-297页
作者: Bueno, Marcos L. P. Hommersom, Arjen Lucas, Peter J. F. Lappenschaar, Martijn Janzing, Joost G. E. Radboud Univ Nijmegen Inst Comp & Informat Sci NL-6525 ED Nijmegen Netherlands Leiden Univ Leiden Inst Adv Comp Sci NL-2300 RA Leiden Netherlands Open Univ Fac Management Sci & Technol Heerlen Netherlands Radboud Univ Nijmegen Dept Psychiat Med Ctr NL-6525 ED Nijmegen Netherlands
For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in... 详细信息
来源: 评论
Bayesian networks for interpretable machine learning and optimization
收藏 引用
NEUROCOMPUTING 2021年 456卷 648-665页
作者: Mihaljevic, Bojan Bielza, Concha Larranaga, Pedro Univ Autonoma Madrid Dept Matemat Madrid Spain Univ Politecn Madrid Madrid Spain
As artificial intelligence is being increasingly used for high-stakes applications, it is becoming more and more important that the models used be interpretable. Bayesian networks offer a paradigm for inter-pretable a... 详细信息
来源: 评论
The Libra Toolkit for probabilistic models
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2015年 第1期16卷 2459-2463页
作者: Lowd, Daniel Rooshenas, Amirmohammad Univ Oregon Dept Comp & Informat Sci Eugene OR 97403 USA
The Libra Toolkit is a collection of algorithms for learning and inference with discrete probabilistic models, including Bayesian networks, Markov networks, dependency networks, and sum-product networks. Compared to o... 详细信息
来源: 评论
libDAI: A Free and Open Source C plus plus Library for Discrete Approximate Inference in graphical models
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2010年 第8期11卷 2169-2173页
作者: Mooij, Joris M. Max Planck Inst Biol Cybernet Dept Empir Inference D-72076 Tubingen Germany
This paper describes the software package libDAI, a free & open source C++ library that provides implementations of various exact and approximate inference methods for graphical models with discrete-valued variabl... 详细信息
来源: 评论