咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是151-160 订阅
排序:
Tuning structure learning algorithms with out-of-sample and resampling strategies
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2024年 第8期66卷 4927-4955页
作者: Chobtham, Kiattikun Constantinou, Anthony C. Queen Mary Univ London Sch Elect Engn & Comp Sci Bayesian Artificial Intelligence Res Lab Machine Intelligence & Decis Syst MInDS Res Grp London E1 4NS England
One of the challenges practitioners face when applying structure learning algorithms to their data involves determining a set of hyperparameters;otherwise, a set of hyperparameter defaults is assumed. The optimal hype... 详细信息
来源: 评论
The probabilistic Program Dependence Graph and Its Application to Fault Diagnosis
收藏 引用
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2010年 第4期36卷 528-545页
作者: Baah, George K. Podgurski, Andy Harrold, Mary Jean Georgia Inst Technol Coll Comp Atlanta GA 30332 USA Case Western Reserve Univ Dept Elect Engn & Comp Sci Cleveland OH 44106 USA
This paper presents an innovative model of a program's internal behavior over a set of test inputs, called the probabilistic program dependence graph (PPDG), which facilitates probabilistic analysis and reasoning ... 详细信息
来源: 评论
New skeleton-based approaches for Bayesian structure learning of Bayesian networks
收藏 引用
APPLIED SOFT COMPUTING 2013年 第2期13卷 1110-1120页
作者: Masegosa, Andres R. Moral, Serafin Univ Granada Dept Comp Sci & Artificial Intelligence E-18071 Granada Spain
Automatically learning the graph structure of a single Bayesian network (BN) which accurately represents the underlying multivariate probability distribution of a collection of random variables is a challenging task. ... 详细信息
来源: 评论
Modeling, classifying and annotating weakly annotated images using Bayesian network
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2010年 第4期21卷 355-363页
作者: Barrat, Sabine Tabbone, Salvatore LORIA UMR 7503 F-54506 Vandoeuvre Les Nancy France
In this paper, we propose a probabilistic graphical model to represent weakly annotated images. We consider an image as weakly annotated if the number of keywords defined for it is less than the maximum number defined... 详细信息
来源: 评论
Exploiting local and repeated structure in Dynamic Bayesian Networks
收藏 引用
ARTIFICIAL INTELLIGENCE 2016年 232卷 43-53页
作者: Vlasselaer, Jonas Meert, Wannes Van den Broeck, Guy De Raedt, Luc Katholieke Univ Leuven Dept Comp Sci Celestijnenlaan 200A Bus 2402 B-3001 Heverlee Belgium
We introduce the structural interface algorithm for exact probabilistic inference in Dynamic Bayesian Networks. It unifies state-of-the-art techniques for inference in static and dynamic networks, by combining princip... 详细信息
来源: 评论
A Bayesian network to evaluate underground rails maintenance strategies in an automation context
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY 2013年 第4期227卷 411-424页
作者: Bouillaut, Laurent Francois, Olivier Dubois, Stephane Univ Paris Est Marne La Vallee France RATP Regie Autonome Transports Parisiens Engn Dep Fontenay Sous Bois France
Reliability analysis has become an integral part of system design and operation. This is especially true for systems performing critical tasks, such as mass transportation systems. This explains the numerous advances ... 详细信息
来源: 评论
Conditional Random Fields for Multiview Sequential Data Modeling
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第3期33卷 1242-1253页
作者: Sun, Shiliang Dong, Ziang Zhao, Jing East China Normal Univ Sch Comp Sci & Technol Shanghai 200062 Peoples R China
Recently, multiview learning has been increasingly focused on machine learning. However, most existing multiview learning methods cannot directly deal with multiview sequential data, in which the inherent dynamical st... 详细信息
来源: 评论
Exact Inference Techniques for the Analysis of Bayesian Attack Graphs
收藏 引用
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2019年 第2期16卷 231-244页
作者: Munoz-Gonzalez, Luis Sgandurra, Daniele Barrere, Martin Lupu, Emil C. Imperial Coll London Dept Comp 180 Queens Gate London SW7 2AZ England
Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour m... 详细信息
来源: 评论
Improving Structure MCMC for Bayesian Networks through Markov Blanket Resampling
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2016年 第1期17卷 4042-4061页
作者: Su, Chengwei Borsuk, Mark E. Dartmouth Coll Thayer Sch Engn Hanover NH 03755 USA
Algorithms for inferring the structure of Bayesian networks from data have become an increasingly popular method for uncovering the direct and indirect influences among variables in complex systems. A Bayesian approac... 详细信息
来源: 评论
Learning directed acyclic graph SPNs in sub-quadratic time
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2020年 120卷 48-73页
作者: Ghose, Amur Jaini, Priyank Poupart, Pascal Univ Waterloo Waterloo ON Canada Vector Inst Toronto ON Canada
In this paper, we present Prometheus, a graph partitioning based algorithm that creates multiple variable decompositions efficiently for learning Sum-Product Network structures across both continuous and discrete doma... 详细信息
来源: 评论