咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是161-170 订阅
排序:
Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of Bayesian networks
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2008年 第2期49卷 345-361页
作者: Antonucci, Alessandro Zaffalon, Marco Ist Dalle Molle Studie Intelligenza Artificiale I CH-6928 Lugano Switzerland
Credal networks are models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Credal nets appear to be powerful means to represent and deal with m... 详细信息
来源: 评论
3D segmentation of abdominal CT imagery with graphical models, conditional random fields and learning
收藏 引用
MACHINE VISION AND APPLICATIONS 2014年 第2期25卷 301-325页
作者: Bhole, Chetan Pal, Christopher Rim, David Wismueller, Axel Univ Rochester Dept Comp Sci Rochester NY 14627 USA Ecole Polytech Dept Genie Informat & Genie Logiciel Montreal PQ H3C 3A7 Canada Univ Rochester Med Ctr Dept Imaging Sci Computat Radiol Lab Rochester NY 14642 USA Univ Munich Dept Radiol Munich Germany
probabilistic graphical models have had a tremendous impact in machine learning and approaches based on energy function minimization via techniques such as graph cuts are now widely used in image segmentation. However... 详细信息
来源: 评论
Bayesian Nonparametric Hidden Markov Model for Agile Radar Pulse Sequences Streaming Analysis
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2023年 71卷 3968-3982页
作者: Bao, Jiadi Li, Yunjie Zhu, Mengtao Wang, Shafei Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Beijing Inst Technol Sch Cyberspace Sci & Technol Beijing 100081 Peoples R China Lab Electromagnet Space Cognit & Intelligent Cont Beijing 100191 Peoples R China
Multi-function radars are sophisticated types of sensors with the capabilities of complex agile inter-pulse modulation implementation and dynamic work mode scheduling. The developments in MFRs pose great challenges to... 详细信息
来源: 评论
Gated Bayesian networks for algorithmic trading
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2016年 第Feb.期69卷 58-80页
作者: Bendtsen, Marcus Pena, Jose M. Linkoping Univ Dept Comp & Informat Sci S-58183 Linkoping Sweden
This paper introduces a new probabilistic graphical model called gated Bayesian network (GBN). This model evolved from the need to represent processes that include several distinct phases. In essence, a GBN is a model... 详细信息
来源: 评论
Thirty years of credal networks: Specification, algorithms and complexity
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2020年 126卷 133-157页
作者: Maua, Denis Deratani Cozman, Fabio Gagliardi Univ Sao Paulo Inst Math & Stat Sao Paulo Brazil Univ Sao Paulo Escola Politecn Sao Paulo Brazil
Credal networks generalize Bayesian networks to allow for imprecision in probability values. This paper reviews the main results on credal networks under strong independence, as there has been significant progress in ... 详细信息
来源: 评论
A survey of sum-product networks structural learning
收藏 引用
NEURAL NETWORKS 2023年 第1期164卷 645-666页
作者: Xia, Riting Zhang, Yan Liu, Xueyan Yang, Bo Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Ed Changchun 130012 Peoples R China Jilin Univ Coll Artificial Intelligence Changchun 130012 Jilin Peoples R China Jilin Univ Coll Comp Sci & Technol Changchun 130012 Jilin Peoples R China Jilin Univ Coll Commun Engn Changchun 130012 Jilin Peoples R China
Sum-product networks (SPNs) in deep probabilistic models have made great progress in com-puter vision, robotics, neuro-symbolic artificial intelligence, natural language processing, probabilistic programming languages... 详细信息
来源: 评论
Learning factor graphs in polynomial time and sample complexity
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2006年 第8期7卷 1743-1788页
作者: Abbeel, Pieter Koller, Daphne Ng, Andrew Y. Stanford Univ Dept Comp Sci Stanford CA 94305 USA
We study the computational and sample complexity of parameter and structure learning in graphical models. Our main result shows that the class of factor graphs with bounded degree can be learned in polynomial time and... 详细信息
来源: 评论
Context Model for Pedestrian Intention Prediction Using Factored Latent-Dynamic Conditional Random Fields
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2021年 第11期22卷 6821-6832页
作者: Neogi, Satyajit Hoy, Michael Dang, Kang Yu, Hang Dauwels, Justin Nanyang Technol Univ Elect & Elect Engn Dept Singapore 639798 Singapore
Smooth handling of pedestrian interactions is a key requirement for Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS). Such systems call for early and accurate prediction of a pedestrian's cro... 详细信息
来源: 评论
Estimating Structurally Similar graphical models
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2023年 第2期69卷 1093-1124页
作者: Sihag, Saurabh Tajer, Ali Univ Penn Dept Neurol Philadelphia PA 19104 USA Rensselaer Polytech Inst Dept Elect Comp & Syst Engn Troy NY 12180 USA
This paper considers the problem of estimating the structure of structurally similar graphical models in high dimensions. This problem is pertinent in multi-modal or multi-domain datasets that consist of multiple info... 详细信息
来源: 评论
Skeleton-based structured early activity prediction
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2021年 第15期80卷 23023-23049页
作者: Arzani, Mohammad M. Fathy, Mahmood Azirani, Ahmad A. Adeli, Ehsan Iran Univ Sci & Technol Tehran Iran Inst Res Fundamental Sci IPM Sch Comp Sci POB 19395-5746 Tehran Iran Stanford Univ Stanford CA 94305 USA
To communicate with people, robots and vision-based interactive systems often need to understand human activities in advance before the activity is performed completely. This early prediction of the activities will he... 详细信息
来源: 评论