咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是231-240 订阅
排序:
Gated Bayesian Networks
Gated Bayesian Networks
收藏 引用
12th Scandinavian Conference on Artificial Intelligence (SCAI)
作者: Bendtsen, Marcus Pena, Jose M. Linkoping Univ IDA ADIT S-58183 Linkoping Sweden
This paper introduces a new probabilistic graphical model called gated Bayesian network (GBN). This model evolved from the need to represent real world processes that include several distinct phases. In essence a GBN ... 详细信息
来源: 评论
Modeling How Students Learn to Program  12
Modeling How Students Learn to Program
收藏 引用
43rd ACM Technical Symposium on Computer Science Education (SIGCSE 2012)
作者: Piech, Chris Sahami, Mehran Koller, Daphne Cooper, Stephen Blikstein, Paulo Stanford Univ Dept Comp Sci Stanford CA 94305 USA
Despite the potential wealth of educational indicators expressed in a student's approach to homework assignments, how students arrive at their final solution is largely overlooked in university courses. In this pa... 详细信息
来源: 评论
Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields  24
Cloud Telemetry Modeling via Residual Gauss-Markov Random Fi...
收藏 引用
24th Conference on Innovation in Clouds, Internet and Networks (ICIN)
作者: Landolfi, Nicholas C. O'Neill, Daniel C. Lall, Sanjay Stanford Univ Dept Comp Sci Stanford CA 94305 USA Stanford Univ Dept Elect Engn Stanford CA 94305 USA
Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, data-based techniques to model their telemetry ... 详细信息
来源: 评论
Assessing the Impact of Single and Pairwise Slot Constraints in a Factor Graph Model for Template-Based Information Extraction  23rd
Assessing the Impact of Single and Pairwise Slot Constraints...
收藏 引用
23rd International Conference on Applications of Natural Language to Information Systems (NLDB)
作者: ter Horst, Hendrik Hartung, Matthias Klinger, Roman Brazda, Nicole Mueller, Hans Werner Cimiano, Philipp Bielefeld Univ CITEC Bielefeld Germany Univ Stuttgart IMS Stuttgart Germany IIIIU Dusseldorf CNR Dusseldorf Germany IIIIU Dusseldorf Neurol Dusseldorf Germany
Template-based information extraction generalizes over standard token-level binary relation extraction in the sense that it attempts to fill a complex template comprising multiple slots on the basis of information giv... 详细信息
来源: 评论
Bayesian network structure learning with causal effects in the presence of latent variables  10
Bayesian network structure learning with causal effects in t...
收藏 引用
10th International Conference on probabilistic graphical models (PGM)
作者: Chobtham, Kiattikun Constantinou, Anthony C. Queen Mary Univ London Bayesian Artificial Intelligence Res Lab Risk & Informat Management Res Grp Sch Elect Engn & Comp Sci London England
Latent variables may lead to spurious relationships that can be misinterpreted as causal relationships. In Bayesian Networks (BNs), this challenge is known as learning under causal insufficiency. Structure learning al... 详细信息
来源: 评论
Joint and Pipeline probabilistic models for Fine-Grained Sentiment Analysis: Extracting Aspects, Subjective Phrases and their Relations
Joint and Pipeline Probabilistic Models for Fine-Grained Sen...
收藏 引用
IEEE 13th International Conference on Data Mining (ICDM)
作者: Klinger, Roman Cimiano, Philipp Univ Bielefeld CIT EC Semant Comp Grp D-33615 Bielefeld Germany
Sentiment analysis and opinion mining are often addressed as a text classification or entity recognition problem, involving the detection or classification of aspects and subjective phrases. Many approaches do not mod... 详细信息
来源: 评论
Novelty Detection Using graphical models for Semantic Room Classification
Novelty Detection Using Graphical Models for Semantic Room C...
收藏 引用
15th Portuguese Conference on Artificial Intelligence (EPIA 2011)
作者: Pinto, Andre Susano Pronobis, Andrzej Reis, Luis Paulo Univ Porto Fac Engn Dep Informat Engn P-4200465 Oporto Portugal Royal Inst Technol KTH Ctr Autonomous Syst SE-10044 Stockholm Sweden Univ Porto LIACC Artificial Intelligence & Comp Sci Lab P-4200465 Oporto Portugal
This paper presents an approach to the problem of novelty detection in the context of semantic room categorization. The ability to assign semantic labels to areas in the environment is crucial for autonomous agents ai... 详细信息
来源: 评论
People on Drugs: Credibility of User Statements in Health Communities  14
People on Drugs: Credibility of User Statements in Health Co...
收藏 引用
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Mukherjee, Subhabrata Weikum, Gerhard Danescu-Niculescu-Mizil, Cristian Max Planck Inst Informat Saarbrucken Germany Max Planck Inst Software Syst Saarbrucken Germany
Online health communities are a valuable source of information for patients and physicians. However, such user-generated resources are often plagued by inaccuracies and misinformation. In this work we propose a method... 详细信息
来源: 评论
Financial Data Analysis with PGMs using AMIDST  16
Financial Data Analysis with PGMs using AMIDST
收藏 引用
16th IEEE International Conference on Data Mining (ICDM)
作者: Cabanas, Rafael Martinez, Ana M. Masegosa, Andres R. Ramos-Lopez, Dario Salmeron, Antonio Nielsen, Thomas D. Langseth, Helge Madsen, Anders L. Aalborg Univ Aalborg Denmark Norwegian Univ Sci & Technol Trondheim Norway Univ Almeria Almeria Spain Hugin Expert AS Aalborg Denmark
The AMIDST Toolbox is an open source Java 8 library for scalable learning of probabilistic graphical models (PGMs) based on both batch and streaming data. An important application domain with streaming data characteri... 详细信息
来源: 评论
Solving Trajectory Optimization Problems by Influence Diagrams  14th
Solving Trajectory Optimization Problems by Influence Diagra...
收藏 引用
14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU)
作者: Vomlel, Jiri Kratochvil, Vaclav Czech Acad Sci Inst Informat Theory & Automat Vodarenskou Vezi 4 Prague 18208 8 Czech Republic Univ Econ Fac Management Prague Jarosovska 1117-2 Jindrichuv Hradec 37701 Czech Republic
Influence diagrams are decision-theoretic extensions of Bayesian networks. In this paper we show how influence diagrams can be used to solve trajectory optimization problems. These problems are traditionally solved by... 详细信息
来源: 评论