咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 397 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 98 篇 理学
    • 45 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 398 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 artificial intel...
  • 7 篇 directed acyclic...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 393 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
398 条 记 录,以下是261-270 订阅
排序:
Facial Expression Recognition with Discriminatory graphical models  2
Facial Expression Recognition with Discriminatory Graphical ...
收藏 引用
2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS)
作者: Hasani, Behzad Arzani, Mohammad M. Fathy, Mahmood Raahemifar, Kaamran Iran Univ Sci & Technol Dept Comp Engn Tehran Iran Ryerson Univ Dept Elect & Comp Engn Toronto ON Canada
Discriminating probabilistic graphical models are reliable tools for a sequence labeling task. Conditional Random Fields (CRFs) are discriminative models which will enable us to label a sequence of input data. Other v... 详细信息
来源: 评论
Learning Orthographic Structure With Sequential Generative Neural Networks
收藏 引用
COGNITIVE SCIENCE 2016年 第3期40卷 579-606页
作者: Testolin, Alberto Stoianov, Ivilin Sperduti, Alessandro Zorzi, Marco Univ Padua Dept Dev Psychol & Socialisat I-35131 Padua Italy Univ Padua Dept Gen Psychol Via Venezia 12 I-35131 Padua Italy CNRS Cognit Psychol Lab F-75700 Paris France Aix Marseille Univ Marseille France Univ Padua Dept Math I-35131 Padua Italy Univ Padua Ctr Cognit Neurosci I-35131 Padua Italy IRCCS San Camillo Neurorehabilitat Hosp Turin Italy
Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictio... 详细信息
来源: 评论
Wind Farm Layout Optimization Using Approximate Inference in graphical models
Wind Farm Layout Optimization Using Approximate Inference in...
收藏 引用
作者: Dhoot, Aditya University of Toronto
学位级别:master
Wind farm layout optimization (WFLO) determines the optimal location of wind turbines within a fixed geographical area to maximize the total power capacity of the wind farm, under stochastic wind conditions and non-li... 详细信息
来源: 评论
A probabilistic graphical Model-based Approach for Minimizing Energy Under Performance Constraints  15
A Probabilistic Graphical Model-based Approach for Minimizin...
收藏 引用
20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
作者: Mishra, Nikita Zhang, Huazhe Lafferty, John D. Hoffmann, Henry Univ Chicago Chicago IL 60637 USA
In many deployments, computer systems are underutilized - meaning that applications have performance requirements that demand less than full system capacity. Ideally, we would take advantage of this under-utilization ... 详细信息
来源: 评论
Automatic Images Annotation Extension Using a probabilistic graphical Model  16th
Automatic Images Annotation Extension Using a Probabilistic ...
收藏 引用
16th International Conference on Computer Analysis of Images and Patterns (CAIP)
作者: Bouzaieni, Abdessalem Tabbone, Salvatore Barrat, Sabine Univ Lorraine LORIA XILOPIX Nancy France Univ Lorraine LORIA Nancy France Univ Tours Comp Sci Lab Tours France
With the fast development of digital cameras and social media image sharing, automatic image annotation has become a research area of great interest. It enables indexing, extracting and searching in large collections ... 详细信息
来源: 评论
A hierarchical Bayesian-MAP approach to inverse problems in imaging
收藏 引用
INVERSE PROBLEMS 2016年 第7期32卷 075003-075003页
作者: Raj, Raghu G. US Naval Res Lab Washington DC 20375 USA
We present a novel approach to inverse problems in imaging based on a hierarchical Bayesian-MAP (HB-MAP) formulation. In this paper we specifically focus on the difficult and basic inverse problem of multi-sensor (tom... 详细信息
来源: 评论
Using Binary Trees for the Evaluation of Influence Diagrams
收藏 引用
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS 2016年 第1期24卷 59-89页
作者: Cabanas, Rafael Gomez-Olmedo, Manuel Cano, Andres Univ Granada CITIC UGR Dept Comp Sci & Artificial Intelligence C Daniel Saucedo Aranda S-N E-18071 Granada Spain
This paper proposes the use of binary trees for representing and managing the potentials involved in Influence Diagrams. This kind of tree allows representing context-specific independencies that are finer-grained com... 详细信息
来源: 评论
Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields
收藏 引用
JOURNAL OF NEURAL ENGINEERING 2016年 第3期13卷 036017-036017页
作者: Delgado Saa, Jaime F. De Pesters, Adriana Cetin, Mujdat Univ Norte Biomed Signal Proc & Artificial Intelligence Lab Barranquilla Colombia Natl Ctr Adapt Neurotechnol Schalk Lab Albany NY USA Sabanci Univ Signal Proc & Informat Syst Lab Istanbul Turkey
Objective. In this work we propose the use of conditional random fields with long-range dependencies for the classification of finger movements from electrocorticographic recordings. Approach. The proposed method uses... 详细信息
来源: 评论
Optimal sequence of tests for the mediastinal staging of non-small cell lung cancer
收藏 引用
BMC MEDICAL INFORMATICS AND DECISION MAKING 2016年 第1期16卷 9-9页
作者: Luque, Manuel Javier Diez, Francisco Disdier, Carlos UNED Dept Artificial Intelligence Juan del Rosal 16 Madrid 28040 Spain Univ Hosp Dept Pulm CIBERES CIBER Resp Dis Ramon & Cajal 3 Valencia 47005 Spain
Background: Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer and the most difficult to predict. When there are no distant metastases, the optimal therapy depends mainly on whether there are... 详细信息
来源: 评论
Hinge-loss Markov random fields and probabilistic soft logic
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2017年 第1期18卷
作者: Stephen H. Bach Matthias Broecheler Bert Huang Lise Getoor Computer Science Department Stanford University Stanford CA DataStax Computer Science Department Virginia Tech Blacksburg VA Computer Science Department University of California Santa Cruz Santa Cruz CA
A fundamental challenge in developing high-impact machine learning technologies is balancing the need to model rich, structured domains with the ability to scale to big data. Many important problem areas are both rich... 详细信息
来源: 评论