咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 397 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 98 篇 理学
    • 45 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 398 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 artificial intel...
  • 7 篇 directed acyclic...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 393 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
398 条 记 录,以下是271-280 订阅
排序:
A Novel Framework for Anomaly Detection of Robot Behaviors
收藏 引用
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 2015年 第2期77卷 361-375页
作者: Haeussermann, Kai Zweigle, Oliver Levi, Paul Univ Stuttgart IPVS Dept Image Understanding D-70569 Stuttgart Germany
Autonomous mobile robots are designed to behave appropriately in changing real-world environments without human intervention. In order to satisfy the requirements of autonomy, robots have to cope with unknown settings... 详细信息
来源: 评论
Latent Hierarchical Model for Activity Recognition
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2015年 第6期31卷 1472-1482页
作者: Hu, Ninghang Englebienne, Gwenn Lou, Zhongyu Krose, Ben Univ Amsterdam Inst Informat NL-1098 XH Amsterdam Netherlands
We present a novel hierarchical model for human activity recognition. In contrast with approaches that successively recognize actions and activities, our approach jointly models actions and activities in a unified fra... 详细信息
来源: 评论
Exploiting semantic knowledge for robot object recognition
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2015年 第Sep.期86卷 131-142页
作者: Ruiz-Sarmiento, Jose-Raul Galindo, Cipriano Gonzalez-Jimenez, Javier Univ Malaga Syst Engn & Automat Dept E-29071 Malaga Spain
This paper presents a novel approach that exploits semantic knowledge to enhance the object recognition capability of autonomous robots. Semantic knowledge is a rich source of information, naturally gathered from huma... 详细信息
来源: 评论
Sum-Product-Max Networks for Tractable Decision Making: (Extended Abstract)  16
Sum-Product-Max Networks for Tractable Decision Making: (Ext...
收藏 引用
Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems
作者: Mazen A. Melibari Pascal Poupart Prashant Doshi University of Waterloo Waterloo ON Canada University Of Georgia Athens GA USA
No abstract available.
来源: 评论
Multiple-concept feature generative models for multi-label image classification
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2015年 136卷 69-78页
作者: Kim, Minyoung Seoul Natl Univ Sci & Technol Dept Elect & IT Media Engn Seoul 139743 South Korea
We consider the problem of multi-label classification where a feature vector may belong to one of more different classes or concepts at the same time. Many existing approaches are devoted for solving the difficult est... 详细信息
来源: 评论
Task-Based Robot Grasp Planning Using probabilistic Inference
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2015年 第3期31卷 546-561页
作者: Song, Dan Ek, Carl Henrik Huebner, Kai Kragic, Danica KTH Royal Inst Technol S-11428 Stockholm Sweden
Grasping and manipulating everyday objects in a goal-directed manner is an important ability of a service robot. The robot needs to reason about task requirements and ground these in the sensorimotor information. Gras... 详细信息
来源: 评论
Self-Similar Magneto-Electric Nanocircuit Technology for probabilistic Inference Engines
收藏 引用
IEEE TRANSACTIONS ON NANOTECHNOLOGY 2015年 第6期14卷 980-991页
作者: Khasanvis, Santosh Li, Mingyu Rahman, Mostafizur Salehi-Fashami, Mohammad Biswas, Ayan K. Atulasimha, Jayasimha Bandyopadhyay, Supriyo Moritz, Csaba Andras Univ Massachusetts Amherst MA 01002 USA Virginia Commonwealth Univ Richmond VA 23284 USA
probabilistic graphical models are powerful mathematical formalisms for machine learning and reasoning under uncertainty that are widely used for cognitive computing. However, they cannot be employed efficiently for l... 详细信息
来源: 评论
The Libra Toolkit for probabilistic models
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2015年 第1期16卷 2459-2463页
作者: Lowd, Daniel Rooshenas, Amirmohammad Univ Oregon Dept Comp & Informat Sci Eugene OR 97403 USA
The Libra Toolkit is a collection of algorithms for learning and inference with discrete probabilistic models, including Bayesian networks, Markov networks, dependency networks, and sum-product networks. Compared to o... 详细信息
来源: 评论
A hybrid approach to dialogue management based on probabilistic rules
收藏 引用
COMPUTER SPEECH AND LANGUAGE 2015年 第1期34卷 232-255页
作者: Lison, Pierre Univ Oslo Dept Informat Language Technol Grp N-0316 Oslo Norway
We present a new modelling framework for dialogue management based on the concept of probabilistic rules. probabilistic rules are defined as structured mappings between logical conditions and probabilistic effects. Th... 详细信息
来源: 评论
The dynamic chain event graph
收藏 引用
ELECTRONIC JOURNAL OF STATISTICS 2015年 第2期9卷 2130-2169页
作者: Barclay, Lorna M. Collazo, Rodrigo A. Smith, Jim Q. Thwaites, Peter A. Nicholson, Ann E. Univ Warwick Dept Stat Coventry CV4 7AL W Midlands England Univ Leeds Sch Math Leeds LS2 9JT W Yorkshire England Monash Univ Fac Informat Technol Clayton Vic 3800 Australia
In this paper we develop a formal dynamic version of Chain Event Graphs (CEGs), a particularly expressive family of discrete graphical models. We demonstrate how this class links to semi-Markov models and provides a c... 详细信息
来源: 评论