咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是371-380 订阅
排序:
Behavior priors for efficient reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 9989-10056页
作者: Dhruva Tirumala Alexandre Galashov Hyeonwoo Noh Leonard Hasenclever Razvan Pascanu Jonathan Schwarz Guillaume Desjardins Wojciech Marian Czarnecki Arun Ahuja Yee Whye Teh Nicolas Heess DeepMind London UK and University College London London UK DeepMind London UK DeepMind London UK and OpenAI San Francisco CA
As we deploy reinforcement learning agents to solve increasingly challenging problems, methods that allow us to inject prior knowledge about the structure of the world and effective solution strategies becomes increas... 详细信息
来源: 评论
Optimal selection of the most informative nodes in Opinion Dynamics on Networks
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 4192-4197页
作者: Roberta Raineri Giacomo Como Fabio Fagnani
Finding the optimal subset to observe in a network system is a fundamental problem in science and engineering, with a wide range of applications like monitoring spatial phenomena, control of epidemic spread, feature s... 详细信息
来源: 评论
probabilistic Complex Event Recognition: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2017年 第5期50卷 71-71页
作者: Alevizos, Elias Skarlatidis, Anastasios Artikis, Alexander Paliouras, Georgios Natl Ctr Sci Res Demokritos Inst Informat & Telecommun Athens 15341 Greece Natl Ctr Sci Res Demokritos Athens Greece Univ Pireaus Piraeus Greece Pollfish Athens 11527 Greece
Complex event recognition (CER) applications exhibit various types of uncertainty, ranging from incomplete and erroneous data streams to imperfect complex event patterns. We review CER techniques that handle, to some ... 详细信息
来源: 评论
An Inference-Based Model of Word Meaning in Context as a Paraphrase Distribution
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2013年 第3期4卷 42-42页
作者: Moon, Taesun Erk, Katrin Univ Texas Austin Dept Linguist Austin TX 78712 USA
Graded models of word meaning in context characterize the meaning of individual usages (occurrences) without reference to dictionary senses. We introduce a novel approach that frames the task of computing word meaning... 详细信息
来源: 评论
Human Action Recognition by Semilatent Topic models
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2009年 第10期31卷 1762-1774页
作者: Wang, Yang Mori, Greg Simon Fraser Univ Sch Comp Sci Burnaby BC V5A 1S6 Canada
We propose two new models for human action recognition from video sequences using topic models. Video sequences are represented by a novel "bag-of-words" representation, where each frame corresponds to a &qu... 详细信息
来源: 评论
Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks
收藏 引用
BMC SYSTEMS BIOLOGY 2014年 第1期8卷 87页
作者: Tian, Ye Zhang, Bai Hoffman, Eric P. Clarke, Robert Zhang, Zhen Shih, Ie-Ming Xuan, Jianhua Herrington, David M. Wang, Yue Virginia Tech Dept Elect & Comp Engn Arlington VA 22203 USA Johns Hopkins Univ Dept Pathol Baltimore MD 21231 USA Childrens Natl Med Ctr Med Genet Res Ctr Washington DC 20010 USA Georgetown Univ Lombardi Comprehens Canc Ctr Washington DC 20057 USA Wake Forest Sch Med Sect Cardiovasc Med Dept Internal Med Winston Salem NC 27157 USA
Background: Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are c... 详细信息
来源: 评论
Recent development and biomedical applications of probabilistic Boolean networks
收藏 引用
CELL COMMUNICATION AND SIGNALING 2013年 第1期11卷 46-46页
作者: Trairatphisan, Panuwat Mizera, Andrzej Pang, Jun Tantar, Alexandru Adrian Schneider, Jochen Sauter, Thomas Univ Luxembourg Life Sci Res Unit Luxembourg Luxembourg Univ Luxembourg Comp Sci & Communicat Res Unit Luxembourg Luxembourg Univ Luxembourg Luxembourg Ctr Syst Biomed Luxembourg Luxembourg Univ Luxembourg Reliabil & Trust Interdisciplinary Ctr Secur Luxembourg Luxembourg Saarland Univ Med Ctr Dept Internal Med 2 Homburg Saarland Germany
probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and prob... 详细信息
来源: 评论
Network analysis of frailty and aging: Empirical data from the Mexican Health and Aging Study
收藏 引用
EXPERIMENTAL GERONTOLOGY 2019年 128卷 110747-000页
作者: Garcia-Pena, Carmen Ramirez-Aldana, Ricardo Parra-Rodriguez, Lorena Carlos Gomez-Verjan, Juan Ulises Perez-Zepeda, Mario Miguel Gutierrez-Robledo, Luis Natl Inst Geriatr Mexico City Res Div Mexico City DF Mexico Natl Inst Geriatr Mexico City Mexico City DF Mexico
Background: Frailty remains a challenge in the aging research area with a number of gaps in knowledge still to be filled. Frailty seems to behave as a network, and in silico evidence is available on this matter. Havin... 详细信息
来源: 评论
Simultaneous inference for pairwise graphical models with generalized score matching
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 3596-3646页
作者: Ming Yu Varun Gupta Mladen Kolar Booth School of Business The University of Chicago Chicago IL
probabilistic graphical models provide a flexible yet parsimonious framework for modeling dependencies among nodes in networks. There is a vast literature on parameter estimation and consistent model selection for gra... 详细信息
来源: 评论
Improving Bayesian network structure learning in the presence of measurement error
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 14604-14631页
作者: Yang Liu Anthony C. Constantinou Zhigao Guo School of Electronic Engineering and Computer Science Queen Mary University of London London UK School of Electronic Engineering and Computer Science Queen Mary University of London London UK and The Alan Turing Institute London UK
Structure learning algorithms that learn the graph of a Bayesian network from observational data often do so by assuming the data correctly reect the true distribution of the variables. However, this assumption does n... 详细信息
来源: 评论