咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是41-50 订阅
排序:
Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2022年 150卷 106160-106160页
作者: Hernandez-Gonzalez, Jeronimo Valls, Olga Torres-Martin, Adrian Cerquides, Jesus Univ Barcelona UB Dept Matemat &Informat Barcelona 08007 Spain Univ Autonoma Barcelona Dept Informat & Commun Engn Cerdanyola Del Valles 08193 Spain Artificial Intelligence Res Inst IIIA CSIC Bellaterra 08193 Spain
Embryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation pr... 详细信息
来源: 评论
PGMax: factor graphs for discrete probabilistic graphical models and loopy belief propagation in JAX
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2024年 第1期25卷 18192-18216页
作者: Guangyao Zhou Antoine Dedieu Nishanth Kumar Wolfgang Lehrach Shrinu Kushagra Dileep George Miguel Lázaro-Gredilla Google DeepMind Massachusetts Institute of Technology
PGMax is an open-source Python/ JAX package for (a) easily specifying discrete probabilistic graphical models (PGMs) as factor graphs; and (b) automatically running efficient and scalable differentiable Loopy Belief P... 详细信息
来源: 评论
Detecting COVID-19 Utilizing probabilistic graphical models
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2021年 第6期12卷 786-793页
作者: Alsuwat, Emad Alzahrani, Sabah Alsuwat, Hatim Taif Univ Coll Comp & Informat Technol Dept Comp Sci At Taif Saudi Arabia Umm Al Qura Univ Coll Comp & Informat Syst Dept Comp Sci Mecca Saudi Arabia
probabilistic graphical models are employed in a variety of areas such as artificial intelligence and machine learning to depict causal relations among sets of random variables. In this research, we employ probabilist... 详细信息
来源: 评论
Robust Depth Image Acquisition Using Modulated Pattern Projection and probabilistic graphical models
收藏 引用
SENSORS 2016年 第10期16卷 1740-1740页
作者: Kravanja, Jaka Zganec, Mario Zganec-Gros, Jerneja Dobrisek, Simon Struc, Vitomir Alpineon Doo Ulica Iga Grudna 15 SI-1000 Ljubljana Slovenia Univ Ljubljana Fac Elect Engn Trzaska Cesta 25 SI-1000 Ljubljana Slovenia
Depth image acquisition with structured light approaches in outdoor environments is a challenging problem due to external factors, such as ambient sunlight, which commonly affect the acquisition procedure. This paper ... 详细信息
来源: 评论
MAsCOT: Self-adaptive Opportunistic Offloading for Cloud-Enabled Smart Mobile Applications with probabilistic graphical models at Runtime
MAsCOT: Self-adaptive Opportunistic Offloading for Cloud-Ena...
收藏 引用
Hawaii International Conference on System Sciences
作者: Nayyab Zia Naqvi Jonas Devlieghere Davy Preuveneers Yolande Berbers iMinds-DistriNet KU Leuven
Although extensive progress has been made in Mobile Cloud Augmentation, automated decision support on the device that enables the opportunistic and intelligent use of cloud resources is missing. Furthermore, we need s... 详细信息
来源: 评论
Tracking Performance and Forming Study Groups for Prep Courses Using probabilistic graphical models  16
Tracking Performance and Forming Study Groups for Prep Cours...
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Yoram Bachrach Yoad Lewenberg Jeffrey S. Rosenschein Yair Zick Microsoft Research Hebrew Univ. of Jerusalem Carnegie Mellon Univ.
Efficient tracking of class performance across topics is an important aspect of classroom teaching; this is especially true for psychometric general intelligence exams, which test a varied range of abilities. We devel... 详细信息
来源: 评论
Reusability of Bayesian Networks case studies: a survey
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-25页
作者: Babakov, Nikolay Sivaprasad, Adarsa Reiter, Ehud Bugarin-Diz, Alberto Univ Santiago Compostela Ctr Singular Invest Tecnoloxias Intelixentes CiTIU Santiago De Compostela 15782 Spain Univ Aberdeen Dept Comp Sci Aberdeen Scotland
Bayesian Networks (BNs) are probabilistic graphical models used to represent variables and their conditional dependencies, making them highly valuable in a wide range of fields, such as radiology, agriculture, neurosc... 详细信息
来源: 评论
bnRep: A repository of Bayesian networks from the academic literature
收藏 引用
NEUROCOMPUTING 2025年 624卷
作者: Leonelli, Manuele IE Univ Sch Sci & Technol Madrid Spain
Bayesian networks (BNs) are widely used for modeling complex systems with uncertainty, yet repositories of pre-built BNs remain limited. This paper introduces bnRep, an open-source R package offering a comprehensive c... 详细信息
来源: 评论
Lifting factor graphs with some unknown factors for new individuals
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2025年 179卷
作者: Luttermann, Malte Moeller, Ralf Gehrke, Marcel German Res Ctr Artificial Intelligence DFKI Ratzeburger Allee 160 D-23562 Lubeck Germany Univ Hamburg Inst Humanities Ctr Artificial Intelligence Warburgstr 28 D-20354 Hamburg Germany
Lifting exploits symmetries in probabilistic graphical models by using a representative for indistinguishable objects, allowing to carry out query answering more efficiently while maintaining exact answers. In this pa... 详细信息
来源: 评论
Toward Variational Structural Learning of Bayesian Networks
收藏 引用
IEEE ACCESS 2025年 13卷 26130-26141页
作者: Masegosa, Andres R. Gomez-Olmedo, Manuel Aalborg Univ Dept Comp Sci DK-9220 Aalborg Denmark Univ Granada Dept Comp Sci & Artificial Intelligence Granada 18012 Spain
This study presents a novel variational framework for structural learning in Bayesian networks (BNs), addressing the key limitation of existing Bayesian methods: their lack of scalability to large graphs with many var... 详细信息
来源: 评论