咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 144 篇 会议
  • 22 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 272 篇 计算机科学与技术...
    • 90 篇 电气工程
    • 41 篇 控制科学与工程
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 石油与天然气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
  • 99 篇 理学
    • 46 篇 数学
    • 27 篇 生物学
    • 13 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 8 篇 地球物理学
    • 6 篇 系统科学
  • 37 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 7 篇 特种医学
  • 26 篇 管理学
    • 22 篇 管理科学与工程(可...
  • 13 篇 农学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 399 篇 probabilistic gr...
  • 67 篇 bayesian network...
  • 34 篇 machine learning
  • 15 篇 structure learni...
  • 13 篇 influence diagra...
  • 11 篇 hidden markov mo...
  • 10 篇 causal discovery
  • 10 篇 approximate infe...
  • 10 篇 markov chain mon...
  • 9 篇 variational infe...
  • 9 篇 factor graphs
  • 9 篇 probabilistic lo...
  • 9 篇 bayesian network
  • 9 篇 graphical models
  • 8 篇 deep learning
  • 8 篇 sum-product netw...
  • 8 篇 belief propagati...
  • 8 篇 bayesian inferen...
  • 8 篇 probabilistic in...
  • 8 篇 artificial intel...

机构

  • 9 篇 univ granada dep...
  • 5 篇 ie univ sch sci ...
  • 4 篇 stanford univ st...
  • 4 篇 univ warwick dep...
  • 3 篇 alan turing inst...
  • 3 篇 university of wa...
  • 3 篇 aalborg univ dep...
  • 3 篇 carnegie mellon ...
  • 3 篇 hugin expert as ...
  • 3 篇 stanford univ de...
  • 2 篇 cornell univ ctr...
  • 2 篇 univ chicago boo...
  • 2 篇 georgia inst tec...
  • 2 篇 alan turing inst...
  • 2 篇 educ univ hong k...
  • 2 篇 univ ljubljana f...
  • 2 篇 kth royal inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 aalborg univ dep...
  • 2 篇 georgia inst tec...

作者

  • 10 篇 constantinou ant...
  • 10 篇 masegosa andres ...
  • 7 篇 moral serafin
  • 6 篇 cano andres
  • 6 篇 cabanas rafael
  • 6 篇 leonelli manuele
  • 6 篇 gomez-olmedo man...
  • 6 篇 chobtham kiattik...
  • 5 篇 kitson neville k...
  • 5 篇 bielza concha
  • 5 篇 maua denis derat...
  • 5 篇 luque manuel
  • 5 篇 cimiano philipp
  • 4 篇 madsen anders l.
  • 4 篇 guo zhigao
  • 4 篇 liu yang
  • 4 篇 tabbone salvator...
  • 4 篇 antonucci alessa...
  • 4 篇 javier diez fran...
  • 4 篇 pena jose m.

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Graphical Models"
399 条 记 录,以下是71-80 订阅
排序:
FuDGE: A Method to Estimate a Functional Differential Graph in a High-Dimensional Setting
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-82页
作者: Zhao, Boxin Wang, Y. Samuel Kolar, Mladen Univ Chicago Booth Sch Business Chicago IL 60637 USA Cornell Univ Dept Stat & Data Sci Ithaca NY 14853 USA
We consider the problem of estimating the difference between two undirected functional graphical models with shared structures. In many applications, data are naturally regarded as a vector of random functions rather ... 详细信息
来源: 评论
BARD: A Structured Technique for Group Elicitation of Bayesian Networks to Support Analytic Reasoning
收藏 引用
RISK ANALYSIS 2022年 第6期42卷 1155-1178页
作者: Nyberg, Erik P. Nicholson, Ann E. Korb, Kevin B. Wybrow, Michael Zukerman, Ingrid Mascaro, Steven Thakur, Shreshth Alvandi, Abraham Oshni Riley, Jeff Pearson, Ross Morris, Shane Herrmann, Matthieu Azad, A. K. M. Bolger, Fergus Hahn, Ulrike Lagnado, David Monash Univ Dept Data Sci & AI Clayton Vic 3800 Australia Bayesian Intelligence Pty Ltd Melbourne Vic Australia Automat Studio Pty Ltd Melbourne Vic Australia Univ Strathclyde Strathclyde Business Sch Glasgow Lanark Scotland UCL Dept Expt Psychol London England Birkbeck Univ London Dept Psychol Sci London England
In many complex, real-world situations, problem solving and decision making require effective reasoning about causation and uncertainty. However, human reasoning in these cases is prone to confusion and error. Bayesia... 详细信息
来源: 评论
probabilistic joint models incorporating logic and learning via structured variational approximation for information extraction
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2012年 第2期32卷 415-444页
作者: Yu, Xiaofeng Lam, Wai Chinese Univ Hong Kong Informat Syst Lab Dept Syst Engn & Engn Management Shatin Hong Kong Peoples R China
Traditional information extraction systems for compound tasks adopt pipeline architectures, which are highly ineffective and suffer from several problems such as cascading accumulation of errors. In this paper, we pro... 详细信息
来源: 评论
Combining object and feature dynamics in probabilistic tracking
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2007年 第3期108卷 243-260页
作者: Taycher, Leonid Fisher, John W., III Darrell, Trevor MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA
Objects can exhibit different dynamics at different spatio-temporal scales, a property that is often exploited by visual tracking algorithms. A local dynamic model is typically used to extract image features that are ... 详细信息
来源: 评论
Hinge-Loss Markov Random Fields and probabilistic Soft Logic
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2017年 第1期18卷 3846-3912页
作者: Bach, Stephen H. Broecheler, Matthias Huang, Bert Getoor, Lise Stanford Univ Comp Sci Dept Stanford CA 94305 USA DataStax Santa Clara CA USA Virginia Tech Comp Sci Dept Blacksburg VA 24061 USA Univ Calif Santa Cruz Comp Sci Dept Santa Cruz CA 95064 USA
A fundamental challenge in developing high-impact machine learning technologies is balancing the need to model rich, structured domains with the ability to scale to big data. Many important problem areas are both rich... 详细信息
来源: 评论
Bayesian distance metric learning for discriminative fuzzy c-means clustering
收藏 引用
NEUROCOMPUTING 2018年 319卷 21-33页
作者: Heidari, Negar Moslehi, Zahra Mirzaei, Abdolreza Safayani, Mehran Isfahan Univ Technol Dept Elect & Comp Engn Esfahan *** Iran
A great number of machine learning algorithms strongly depend on the underlying distance metric for representing the important correlations of input data. Distance metric learning is defined as learning an appropriate... 详细信息
来源: 评论
Diverse and consistent multi-view networks for semi-supervised regression
收藏 引用
MACHINE LEARNING 2023年 第7期112卷 2359-2395页
作者: Nguyen, Cuong Raja, Arun Zhang, Le Xu, Xun Unnikrishnan, Balagopal Ragab, Mohamed Lu, Kangkang Foo, Chuan-Sheng ASTAR Inst Infocomm Res I2R 1 Fusionopolis WayConnexis North Tower 20-10 Singapore 138632 Singapore ASTAR Ctr Frontier AI Res CFAR 1 Fusionopolis WayConnexis North Tower 16-16 Singapore 138632 Singapore Univ Elect Sci & Technol China 4 1st Ring Rd East 2 Sect Chengdu 610056 Sichuan Peoples R China Univ Toronto 27 Kings Coll Cir Toronto ON M5S 1A1 Canada
Label collection is costly in many applications, which poses the need for label-efficient learning. In this work, we present Diverse and Consistent Multi-view Networks (DiCoM)-a novel semi-supervised regression techni... 详细信息
来源: 评论
An Adaptive Markov Random Field for Structured Compressive Sensing
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2019年 第3期28卷 1556-1570页
作者: Suwanwimolkul, Suwichaya Zhang, Lei Gong, Dong Zhang, Zhen Chen, Chao Ranasinghe, Damith C. Shi, Javen Qinfeng Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia Natl Univ Singapore Dept Comp Sci Singapore 119077 Singapore SUNY Stony Brook Dept Biomed Informat Stony Brook NY 11794 USA
Exploiting intrinsic structures in sparse signals underpin the recent progress in compressive sensing (CS). The key for exploiting such structures is to achieve two desirable properties: generality (i.e., the ability ... 详细信息
来源: 评论
FunCat functional inference with belief propagation and feature integration
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2008年 第5期32卷 375-377页
作者: Surmeli, Dimitrij Ratmann, Oliver Mewes, Hans-Werner Tetko, Igor V. Inst Bioinformat & Syst Biol Helmholtz Zentrum Munchen German Res Ctr Environm D-85764 Neuherberg Germany BrainLAB Feldkirchen Germany Univ London Imperial Coll Sci Technol & Med Ctr Biostat London W2 1PG England Tech Univ Munich Life & Food Sci Ctr Weihenstephan D-85354 Freising Weihenstephan Germany
Pairwise comparison of sequence data is intensively used for automated functional protein annotation, while graphical models emerge as promising candidates for an integration of various heterogeneous features. We desi... 详细信息
来源: 评论
Saving computational budget in Bayesian network-based evolutionary algorithms
收藏 引用
NATURAL COMPUTING 2021年 第4期20卷 775-790页
作者: Scoczynski, Marcella Delgado, Myriam Luders, Ricardo Oliva, Diego Wagner, Markus Sung, Inkyung El Yafrani, Mohamed Fed Univ Technol Parana UTFPR Curitiba Parana Brazil Univ Oberta Catalunya IN3 Comp Sci Dept Barcelona Spain Univ Guadalajara Dept Ciencias Computac CUCEI Guadalajara Jalisco Mexico Univ Adelaide Optimisat & Logist Adelaide SA Australia Aalborg Univ Operat Res Grp Aalborg Denmark
During the evolutionary process, algorithms based on probability distributions for generating new individuals suffer from computational burden due to the intensive computation of probability distribution estimations, ... 详细信息
来源: 评论