咨询与建议

限定检索结果

文献类型

  • 64 篇 期刊文献
  • 16 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 82 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 35 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 9 篇 土木工程
    • 8 篇 控制科学与工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 石油与天然气工程
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
  • 28 篇 理学
    • 18 篇 数学
    • 6 篇 物理学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 3 篇 医学
    • 2 篇 临床医学
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学

主题

  • 82 篇 probabilistic ma...
  • 11 篇 uncertainty quan...
  • 7 篇 gaussian process...
  • 6 篇 gaussian process...
  • 5 篇 machine learning
  • 4 篇 bayesian methods
  • 4 篇 gaussian process
  • 4 篇 bayesian modelin...
  • 3 篇 structural healt...
  • 3 篇 nuclear chemistr...
  • 3 篇 stochastic diffe...
  • 3 篇 surrogate modeli...
  • 3 篇 bayesian model d...
  • 3 篇 bayesian inferen...
  • 3 篇 uncertainty
  • 3 篇 data fusion
  • 2 篇 variational infe...
  • 2 篇 latent dirichlet...
  • 2 篇 radiation dose
  • 2 篇 inverse problems

机构

  • 5 篇 indian inst tech...
  • 5 篇 indian inst tech...
  • 4 篇 brown univ div a...
  • 3 篇 mitsubishi elect...
  • 3 篇 enusa ind avanza...
  • 2 篇 mit dept mech en...
  • 2 篇 tu dortmund univ...
  • 2 篇 zhejiang univ st...
  • 2 篇 univ dayton res ...
  • 1 篇 tech univ munich...
  • 1 篇 univ texas austi...
  • 1 篇 chinese acad sci...
  • 1 篇 alan turing inst...
  • 1 篇 univ connecticut...
  • 1 篇 naval postgrad s...
  • 1 篇 ohio state univ ...
  • 1 篇 hong kong polyte...
  • 1 篇 univ bristol bri...
  • 1 篇 fuzhou univ coll...
  • 1 篇 univ estadual pa...

作者

  • 7 篇 chakraborty souv...
  • 6 篇 tripura tapas
  • 4 篇 nayek rajdip
  • 4 篇 raissi maziar
  • 4 篇 karniadakis geor...
  • 3 篇 chakrabarty anku...
  • 3 篇 ramirez-hereza p...
  • 3 篇 toledano doroteo...
  • 3 篇 gonzalez-rodrigu...
  • 3 篇 ariza-velazquez ...
  • 3 篇 ramos daniel
  • 2 篇 berns fabian
  • 2 篇 duckworth paul
  • 2 篇 pepper nick
  • 2 篇 perdikaris paris
  • 2 篇 jiang zhenhua
  • 2 篇 mathpati yogesh ...
  • 2 篇 ghosh sayan
  • 2 篇 kersting kristia...
  • 2 篇 ascarza eva

语言

  • 69 篇 英文
  • 13 篇 其他
检索条件"主题词=Probabilistic Machine Learning"
82 条 记 录,以下是1-10 订阅
排序:
probabilistic machine learning for preventing fatigue failures in Additively Manufactured SS316L
收藏 引用
ENGINEERING FAILURE ANALYSIS 2025年 168卷
作者: Centola, Alessio Ciampaglia, Alberto Paolino, Davide Salvatore Tridello, Andrea Politecn Torino Dept Mech & Aerosp Engn I-10129 Turin Italy
This study presents a probabilistic machine learning approach to predict and improve the fatigue performance of additively manufactured SS316L components. By analyzing key manufacturing parameters as process settings,... 详细信息
来源: 评论
probabilistic machine learning-Based Frequency Normalization Method for Bridge Damage Detection Considering Environmental Variations
收藏 引用
INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS 2025年 第0期
作者: Pei, Xue-Yang Zhang, He-Tang Huang, Hai-Bin Liang, Dong Yancheng Inst Technol Sch Civil Engn Yancheng 224051 Peoples R China Hebei Univ Technol Sch Civil & Transportat Engn Tianjin 300401 Peoples R China Tiancheng Zhichuang Tianjin Technol Co Ltd Tianjin 300101 Peoples R China
The bridge natural frequency changes caused by structural damages are often masked by the variations of environmental factors (especially the temperature), thus the ability to detect early damage is usually weakened. ... 详细信息
来源: 评论
probabilistic machine learning pipeline using topological descriptors for real-time state estimation of high-rate dynamic systems
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2025年 227卷
作者: Chua, Yang Kang Coble, Daniel Razmarashooli, Arman Paul, Steve Martinez, Daniel A. Salazar Hu, Chao Downey, Austin R. J. Laflamme, Simon Univ Connecticut Sch Mech Aerosp & Mfg Engn Storrs CT 06269 USA Univ South Carolina Dept Mech Engn Columbia SC USA Iowa State Univ Dept Civil Construct & Environm Engn Ames IA USA Univ South Carolina Dept Civil & Environm Engn Columbia SC USA Iowa State Univ Dept Elect & Comp Engn Ames IA USA Duke Univ Thomas Lord Dept Mech Engn & Mat Sci Durham NC USA
High-rate systems are structures that undergo rapid changes, exhibiting dynamics that evolve over short durations, often less than 100 ms. In this study, we propose a probabilistic machine learning pipeline for estima... 详细信息
来源: 评论
probabilistic machine learning to improve generalisation of data-driven turbulence modelling
收藏 引用
COMPUTERS & FLUIDS 2024年 284卷
作者: Ho, Joel Pepper, Nick Dodwell, Tim Univ Exeter Exeter England Alan Turing Inst London England
A probabilistic machine learning model is introduced to augment the k - omega SST turbulence model in order to improve the modelling of separated flows and the generalisability of learnt corrections. Increasingly, mac... 详细信息
来源: 评论
probabilistic machine learning framework for chemical source term integration with Gaussian Processes: H2/air auto-ignition case
收藏 引用
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024年 81卷 47-55页
作者: Ustun, Cihat Emre Paykani, Amin Queen Mary Univ London Sch Engn & Mat Sci London E1 4NS England
The integration of chemistry poses a major bottleneck in numerical combustion modelling, as a significant amount of simulation time is consumed in the direct integration (DI) of differential equations into thermochemi... 详细信息
来源: 评论
probabilistic machine learning for detection of tightening torque in bolted joints
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2022年 第5期21卷 2136-2151页
作者: Miguel, Luccas P. Teloli, Rafael de O. da Silva, Samuel Chevallier, Gael Univ Estadual Paulista Dept Engn Mecan Fac Engn Campus Ilha Solteira Ilha Solteira Brazil Univ Bourgogne Franche Comte Dept Mecan Appl Besancon Bourgogne Franc France
Observing the loss of tightening torque using modal parameters is challenging due to the variability and nonlinear effects in bolted joints. Thus, this paper proposes a combined application of two probabilistic machin... 详细信息
来源: 评论
probabilistic machine learning based predictive and interpretable digital twin for dynamical systems
收藏 引用
COMPUTERS & STRUCTURES 2023年 第1期281卷
作者: Tripura, Tapas Desai, Aarya Sheetal Adhikari, Sondipon Chakraborty, Souvik Indian Inst Technol Delhi Dept Appl Mech Delhi 110016 India Indian Inst Technol Delhi Yardi Sch Artificial Intelligence ScAI Delhi 110016 India Univ Glasgow James Watt Sch Engn Glasgow G12 8QQ Scotland
A framework for creating and updating digital twins for dynamical systems from a library of physics -based functions is proposed. The sparse Bayesian machine learning is used to update and derive an inter-pretable exp... 详细信息
来源: 评论
Scalable Room-Temperature Quantum Processors for probabilistic machine learning and Decision  76
Scalable Room-Temperature Quantum Processors for Probabilist...
收藏 引用
76th Annual IEEE National Aerospace and Electronics Conference (NAECON)
作者: Di Salvo, Roberto Jiang, Zhenhua Quoherent Inc Cincinnati OH 45245 USA Univ Dayton Res Inst Dayton OH 45469 USA
This paper presents a modular hardware / software architecture suited to scalable, configurable quantum processors based upon room-temperature quantum materials and control devices. The principle of operation and sali... 详细信息
来源: 评论
Efficient analysis of composites manufacturing using multi-fidelity simulation and probabilistic machine learning
收藏 引用
COMPOSITES PART B-ENGINEERING 2024年 280卷
作者: Schoenholz, Caleb Zappino, Enrico Petrolo, Marco Zobeiry, Navid Univ Washington Mat Sci & Engn Dept 302 Roberts HallBox 352120 Seattle WA 98195 USA Politecn Torino Dept Mech & Aerosp Engn Lab MUL2 Corso Duca Abruzzi 24 I-10129 Turin Italy
This paper introduces an innovative approach for the efficient analysis of composites manufacturing processes and phenomena. The method combines low- and high-fidelity simulation schemes with limited amounts of experi... 详细信息
来源: 评论
BENCHMARKING probabilistic machine learning MODELS FOR ARCTIC SEA ICE FORECASTING
BENCHMARKING PROBABILISTIC MACHINE LEARNING MODELS FOR ARCTI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Ali, Sahara Mostafa, Seraj A. M. Li, Xingyan Khanjani, Sara Wang, Jianwu Foulds, James Janeja, Vandana Univ Maryland Baltimore Cty Baltimore MD 21250 USA
The Arctic is a region with unique climate features, motivating new AI methodologies to study it. Unfortunately, Arctic sea ice has seen a continuous decline since 1979. This not only poses a significant threat to Arc... 详细信息
来源: 评论