咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 14 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
321 条 记 录,以下是221-230 订阅
排序:
A Denotational Semantics for Low-Level probabilistic Programs with Nondeterminism  35th
A Denotational Semantics for Low-Level Probabilistic Program...
收藏 引用
35th Conference on the Mathematical Foundations of programming Semantics
作者: Wang, Di Hoffmann, Jan Reps, Thomas Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Wisconsin Madison WI 53706 USA GrammaTech Inc Ithaca NY USA
probabilistic programming is an increasingly popular formalism for modeling randomness and uncertainty. Designing semantic models for probabilistic programs has been extensively studied, but is technically challenging... 详细信息
来源: 评论
probabilistic Models for Assured Position, Navigation, and Timing
Probabilistic Models for Assured Position, Navigation, and T...
收藏 引用
Conference on Autonomous Systems - Sensors, Vehicles, Security, and the Internet of Everything
作者: Molina-Markham, Andres D. MITRE Corp 202 Burlington Rd Bedford MA 01730 USA
Position, navigation, and timing (PNT) user equipment produces position, velocity, and time (PVT) estimates by combining measurements from multiple Global Navigation Satellite Systems (GNSS) and from additional sensor... 详细信息
来源: 评论
Less (Data) Is More: Why Small Data Holds the Key to the Future of Artificial Intelligence  8
Less (Data) Is More: Why Small Data Holds the Key to the Fut...
收藏 引用
8th International Conference on Data Science, Technology and Applications (DATA)
作者: Greco, Ciro Polonioli, Andrea Tagliabue, Jacopo Tooso Labs San Francisco CA 94102 USA
The claims that big data holds the key to enterprise successes and that Artificial Intelligence (AI) is going to replace humanity have become increasingly more popular over the past few years, both in academia and in ... 详细信息
来源: 评论
Distribution-Aware Sampling of Answer Sets  12th
Distribution-Aware Sampling of Answer Sets
收藏 引用
12th International Conference on Scalable Uncertainty Management (SUM)
作者: Nickles, Matthias Natl Univ Ireland Sch Engn & Informat Galway Ireland
Distribution-aware answer set sampling has a wide range of potential applications, for example in the area of probabilistic logic programming or for the computation of approximate solutions of combinatorial or search ... 详细信息
来源: 评论
Bounded Expectations: Resource Analysis for probabilistic Programs  2018
Bounded Expectations: Resource Analysis for Probabilistic Pr...
收藏 引用
39th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Van Chan Ngo Carbonneaux, Quentin Hoffmann, Jan Carnegie Mellon Univ Pittsburgh PA 15213 USA Yale Univ New Haven CT 06520 USA
This paper presents a new static analysis for deriving upper bounds on the expected resource consumption of probabilistic programs. The analysis is fully automatic and derives symbolic bounds that are multivariate pol... 详细信息
来源: 评论
Bayonet: probabilistic Inference for Networks  2018
Bayonet: Probabilistic Inference for Networks
收藏 引用
39th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Gehr, Timon Misailovic, Sasa Tsankov, Petar Vanbever, Laurent Wiesmann, Pascal Vechev, Martin Swiss Fed Inst Technol Zurich Switzerland UIUC Champaign IL USA
Network operators often need to ensure that important probabilistic properties are met, such as that the probability of network congestion is below a certain threshold. Ensuring such properties is challenging and requ... 详细信息
来源: 评论
Sound probabilistic Inference via Guide Types  2021
Sound Probabilistic Inference via Guide Types
收藏 引用
42nd ACM SIGPLAN International Conference on programming Language Design and Implementation (PLDI)
作者: Wang, Di Hoffmann, Jan Reps, Thomas Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Wisconsin Madison WI 53706 USA
probabilistic programming languages aim to describe and automate Bayesian modeling and inference. Modern languages support programmable inference, which allows users to customize inference algorithms by incorporating ... 详细信息
来源: 评论
Warped Input Gaussian Processes for Time Series Forecasting  1
收藏 引用
5th International Symposium on Cyber Security Cryptography and Machine Learning (CSCML)
作者: Vinokur, Igor Tolpin, David Ben Gurion Univ Negev Beer Sheva Israel
Time series forecasting plays a vital role in system monitoring and novelty detection. However, commonly used forecasting methods are not suited for handling non-stationarity, while existing methods for forecasting in... 详细信息
来源: 评论
Incremental Inference for probabilistic Programs  2018
Incremental Inference for Probabilistic Programs
收藏 引用
39th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Cusumano-Towner, Marco Bichsel, Benjamin Gehr, Timon Vechev, Martin Mansinghka, Vikash K. MIT 77 Massachusetts Ave Cambridge MA 02139 USA Swiss Fed Inst Technol Zurich Switzerland
We present a novel approach for approximate sampling in probabilistic programs based on incremental inference. The key idea is to adapt the samples for a program P into samples for a program Q, thereby avoiding the ex... 详细信息
来源: 评论
Output-Sensitive Adaptive Metropolis-Hastings for probabilistic Programs
Output-Sensitive Adaptive Metropolis-Hastings for Probabilis...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD)
作者: Tolpin, David de Meent, Jan-Willem van Paige, Brooks Wood, Frank Univ Oxford Dept Engn Sci Oxford OX1 3PJ England
We introduce an adaptive output-sensitive Metropolis-Hastings algorithm for probabilistic models expressed as programs, Adaptive Lightweight Metropolis-Hastings (AdLMH). This algorithm extends Lightweight Metropolis-H... 详细信息
来源: 评论