咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 167 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 20 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 40 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
321 条 记 录,以下是231-240 订阅
排序:
Sustainability at Scale: Towards Bridging the Intention-Behavior Gap with Sustainable Recommendations  18
Sustainability at Scale: Towards Bridging the Intention-Beha...
收藏 引用
12th ACM Conference on Recommender Systems (RecSys)
作者: Tomkins, Sabina Isley, Steven London, Ben Getoor, Lise UC Santa Cruz Santa Cruz CA 95064 USA Amazon Seattle WA USA
Finding sustainable products and evaluating their claims is a significant barrier facing sustainability-minded customers. Tools that reduce both these burdens are likely to boost the sale of sustainable products. Howe... 详细信息
来源: 评论
Relaxations for probabilistically constrained stochastic programming problems: review and extensions
收藏 引用
Annals of Operations Research 2018年 1-22页
作者: Lejeune, Miguel A. Prékopa, A. Department of Decision Sciences George Washington University Washington DC United States Rutgers University Piscataway NJ United States
We consider probabilistically constrained stochastic programming problems, in which the random variables are in the right-hand sides of the stochastic inequalities defining the joint chance constraints. Problems of th... 详细信息
来源: 评论
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms for probabilistic Models  19
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms fo...
收藏 引用
Proceedings of the Twenty-Fourth International Conference on Architectural Support for programming Languages and Operating Systems
作者: Subho S. Banerjee Zbigniew T. Kalbarczyk Ravishankar K. Iyer University of Illinois at Urbana-Champaign Urbana IL USA
probabilistic models (PMs) are ubiquitously used across a variety of machine learning applications. They have been shown to successfully integrate structural prior information about data and effectively quantify uncer... 详细信息
来源: 评论
probabilistic programming for assessment of capability and capacity
Probabilistic programming for assessment of capability and c...
收藏 引用
Conference on Signal Processing, Sensor Fusion, and Target Recognition XX
作者: Pfeffer, Avi P. Harrison, Scott A. Charles River Analyt Inc Cambridge MA 02138 USA
Answering the questions "What can the adversary do?" and "What will the adversary do?" are critical functions of intelligence analysis. These questions require processing many sources of informatio... 详细信息
来源: 评论
Bayesian hierarchical spatial models: Implementing the Besag York Mollie model in stan
收藏 引用
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY 2019年 31卷 100301-000页
作者: Morris, Mitzi Wheeler-Martin, Katherine Simpson, Dan Mooney, Stephen J. Gelman, Andrew DiMaggio, Charles Columbia Univ Inst Social & Econ Res & Policy New York NY USA NYU Dept Surg Sch Med New York NY 10016 USA Univ Toronto Dept Stat Sci Toronto ON Canada Univ Washington Dept Epidemiol Seattle WA 98195 USA Columbia Univ Dept Stat New York NY USA
This report presents a new implementation of the Besag-York-Mollie (BYM) model in Stan, a probabilistic programming platform which does full Bayesian inference using Hamiltonian Monte Carlo (HMC). We review the spatia... 详细信息
来源: 评论
Automatic Differentiation Variational Inference
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2017年 第1期18卷 1-45页
作者: Kucukelbir, Alp Tran, Dustin Ranganath, Rajesh Gelman, Andrew Blei, David M. Columbia Univ Dept Comp Sci Data Sci Inst New York NY 10027 USA Columbia Univ Dept Comp Sci New York NY 10027 USA Princeton Univ Dept Comp Sci Princeton NJ 08540 USA Columbia Univ Data Sci Inst Dept Polit Sci New York NY 10027 USA Columbia Univ Data Sci Inst Dept Stat New York NY 10027 USA
probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this pro... 详细信息
来源: 评论
Planning in hybrid relational MDPs
收藏 引用
MACHINE LEARNING 2017年 第12期106卷 1905-1932页
作者: Nitti, Davide Belle, Vaishak De Laet, Tinne De Raedt, Luc Katholieke Univ Leuven Dept Comp Sci B-3001 Leuven Belgium Univ Edinburgh Sch Informat Edinburgh EH8 9AB Midlothian Scotland Katholieke Univ Leuven Fac Engn Sci B-3001 Leuven Belgium
We study planning in relational Markov decision processes involving discrete and continuous states and actions, and an unknown number of objects. This combination of hybrid relational domains has so far not received a... 详细信息
来源: 评论
DERIVING PROBABILITY DENSITY FUNCTIONS FROM probabilistic FUNCTIONAL PROGRAMS
收藏 引用
LOGICAL METHODS IN COMPUTER SCIENCE 2017年 第2期13卷
作者: Bhat, Sooraj Borgstrom, Johannes Gordon, Andrew D. Russo, Claudio Georgia Inst Technol Atlanta GA 30332 USA Uppsala Univ Uppsala Sweden Microsoft Res Redmond WA USA Univ Edinburgh Edinburgh Midlothian Scotland
The probability density function of a probability distribution is a fundamental concept in probability theory and a key ingredient in various widely used machine learning methods. However, the necessary framework for ... 详细信息
来源: 评论
FairSquare: probabilistic Verification of Program Fairness
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2017年 第OOPSLA期1卷 1-30页
作者: Albarghouthi, Aws D'Antoni, Loris Drews, Samuel Nori, Aditya, V Univ Wisconsin Dept Comp Sci 1210 West Dayton St Madison WI 53706 USA Microsoft Res 21 Stn Rd Cambridge CB1 2FB England
With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that we aggressively investigate fairness and bias in decision-making programs. First, we show that a number of... 详细信息
来源: 评论
programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE
收藏 引用
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 2017年 第2期26卷 403-413页
作者: de Valpine, Perry Turek, Daniel Paciorek, Christopher J. Anderson-Bergman, Clifford Lang, Duncan Temple Bodik, Rastislav Univ Calif Berkeley Dept Environm Sci Policy & Management Berkeley CA 94720 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA Univ Calif Davis Dept Stat Davis CA 95616 USA Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA
We describe NIMBLE, a system for programming statistical algorithms for general model structures within R. NIMBLE is designed to meet three challenges: flexible model specification, a language for programming algorith... 详细信息
来源: 评论