咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 14 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
321 条 记 录,以下是251-260 订阅
排序:
probabilistic Relational Verification for Cryptographic Implementations  14
Probabilistic Relational Verification for Cryptographic Impl...
收藏 引用
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of programming Languages (POPL)
作者: Barthe, Gilles Fournet, Cedric Gregoire, Benjamin Strub, Pierre-Yves Swamy, Nikhil Zanella-Beguelin, Santiago IMDEA Software Inst Madrid Spain INRIA Paris France
Relational program logics have been used for mechanizing formal proofs of various cryptographic constructions. With an eye towards scaling these successes towards end-to-end security proofs for implementations of dist... 详细信息
来源: 评论
Bayesian Hierarchical Modelling for Tailoring Metric Thresholds  15
Bayesian Hierarchical Modelling for Tailoring Metric Thresho...
收藏 引用
ACM/IEEE 15th International Conference on Mining Software Repositories (MSR)
作者: Ernst, Neil A. Univ Victoria Dept Comp Sci Victoria BC Canada
Software is highly contextual. While there are cross-cutting 'global' lessons, individual software projects exhibit many 'local' properties. This data heterogeneity makes drawing local conclusions from... 详细信息
来源: 评论
Incremental Precision-Preserving Symbolic Inference for probabilistic Programs  2019
Incremental Precision-Preserving Symbolic Inference for Prob...
收藏 引用
40th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI) part of ACM's Federated Computing Research Conference (FCRC)
作者: Zhang, Jieyuan Xue, Jingling UNSW Sydney Sch Comp Sci & Engn Sydney NSW Australia
We present ISymb, an incremental symbolic inference framework for probabilistic programs in situations when some loop-manipulated array data, upon which their probabilistic models are conditioned, undergoes small chan... 详细信息
来源: 评论
Controlling Procedural Modeling Programs with Stochastically-Ordered Sequential Monte Carlo
Controlling Procedural Modeling Programs with Stochastically...
收藏 引用
ACM SIGGRAPH Conference
作者: Ritchie, Daniel Mildenhall, Ben Goodman, Noah D. Hanrahan, Pat Stanford Univ Stanford CA 94305 USA
We present a method for controlling the output of procedural modeling programs using Sequential Monte Carlo (SMC). Previous probabilistic methods for controlling procedural models use Markov Chain Monte Carlo (MCMC), ... 详细信息
来源: 评论
A Higher-Order Language for Markov Kernels and Linear Operators  1
收藏 引用
26th International Conference on Foundations of Software Science and Computational Structures (FOSSACS)
作者: de Amorim, Pedro H. Azevedo Cornell Univ Ithaca NY 14850 USA
Much work has been done to give semantics to probabilistic programming languages. In recent years, most of the semantics used to reason about probabilistic programs fall in two categories: semantics based on Markov ke... 详细信息
来源: 评论
SixthSense: Debugging Convergence Problems in probabilistic Programs via Program Representation Learning  25th
SixthSense: Debugging Convergence Problems in Probabilistic ...
收藏 引用
25th International Conference on Fundamental Approaches to Software Engineering (FASE) Held as Part of the Annual European Joint Conferences on Theory and Practice of Software (ETAPS)
作者: Dutta, Saikat Huang, Zixin Misailovic, Sasa Univ Illinois Urbana IL 61820 USA
probabilistic programming aims to open the power of Bayesian reasoning to software developers and scientists, but identification of problems during inference and debugging are left entirely to the developers and typic... 详细信息
来源: 评论
Mastering Uncertainty in Performance Estimations of Configurable Software Systems  35
Mastering Uncertainty in Performance Estimations of Configur...
收藏 引用
35th IEEE/ACM International Conference on Automated Software Engineering (ASE)
作者: Dorn, Johannes Apel, Sven Siegmund, Norbert Univ Leipzig Leipzig Germany Saarland Univ Saarbrucken Germany
Understanding the influence of configuration options on performance is key for finding optimal system configurations, system understanding, and performance debugging. In prior research, a number of performance-influen... 详细信息
来源: 评论
PMAF: An Algebraic Framework for Static Analysis of probabilistic Programs  2018
PMAF: An Algebraic Framework for Static Analysis of Probabil...
收藏 引用
39th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Wang, Di Hoffmann, Jan Reps, Thomas Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Wisconsin Madison WI 53706 USA GrammaTech Inc Ithaca NY USA
Automatically establishing that a probabilistic program satisfies some property phi is a challenging problem. While a sampling-based approach-which involves running the program repeatedly-can suggest that phi holds, t... 详细信息
来源: 评论
Temperature Driven Bayesian probabilistic Modelling of Electricity Demand, Capacity, and Adequacy
Temperature Driven Bayesian Probabilistic Modelling of Elect...
收藏 引用
International Conference on probabilistic Methods Applied to Power Systems (PMAPS)
作者: Ahmed, Elyas Sohm, Daniel Toronto Canada
The declining costs for various distributed energy resources such as solar and energy storage is driving an increase in the penetration level of these resources at the grid's edge. The electricity market operator ... 详细信息
来源: 评论
SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract)  19th
SynthLog: A Language for Synthesising Inductive Data Models ...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Dauxais, Yann Gautrais, Clement Dries, Anton Jain, Arcchit Kolb, Samuel Kumar, Mohit Teso, Stefano Van Wolputte, Elia Verbruggen, Gust De Raedt, Luc Katholieke Univ Leuven Dept Comp Sci Celestijnenlaan 200A Leuven Belgium
We introduce SynthLog, an extension of the probabilistic logic programming language ProbLog, for synthesising inductive data models. Inductive data models integrate data with predictive and descriptive models, in a wa... 详细信息
来源: 评论