咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 307 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
321 条 记 录,以下是271-280 订阅
排序:
λPSI: Exact Inference for Higher-Order probabilistic Programs  2020
λPSI: Exact Inference for Higher-Order Probabilistic Progra...
收藏 引用
41st ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Gehr, Timon Steffen, Samuel Vechev, Martin Swiss Fed Inst Technol Zurich Switzerland
We present lambda PSI, the first probabilistic programming language and system that supports higher-order exact inference for probabilistic programs with first-class functions, nested inference and discrete, continuou... 详细信息
来源: 评论
Slicing probabilistic Programs  14
Slicing Probabilistic Programs
收藏 引用
35th ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Hur, Chung-Kil Nori, Aditya V. Rajamani, Sriram K. Samuel, Selva Seoul Natl Univ Seoul 151 South Korea
probabilistic programs use familiar notation of programming languages to specify probabilistic models. Suppose we are interested in estimating the distribution of the return expression r of a probabilistic program P. ... 详细信息
来源: 评论
Debugging probabilistic Programs  1
Debugging Probabilistic Programs
收藏 引用
4th ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array programming (ARRAY) / 1st ACM SIGPLAN International Workshop on Machine Learning and programming Languages (MAPL)
作者: Nandi, Chandrakana Sampson, Adrian Mytkowicz, Todd McKinley, Kathryn S. Univ Washington Seattle WA 98195 USA Cornell Univ Ithaca NY USA Microsoft Res Redmond WA USA Google Mountain View CA USA
Many applications compute with estimated and uncertain data. While advances in probabilistic programming help developers build such applications, debugging them remains extremely challenging. New types of errors in pr... 详细信息
来源: 评论
Sustainability at Scale: Towards Bridging the Intention-Behavior Gap with Sustainable Recommendations  18
Sustainability at Scale: Towards Bridging the Intention-Beha...
收藏 引用
12th ACM Conference on Recommender Systems (RecSys)
作者: Tomkins, Sabina Isley, Steven London, Ben Getoor, Lise UC Santa Cruz Santa Cruz CA 95064 USA Amazon Seattle WA USA
Finding sustainable products and evaluating their claims is a significant barrier facing sustainability-minded customers. Tools that reduce both these burdens are likely to boost the sale of sustainable products. Howe... 详细信息
来源: 评论
Operational Planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)  11
Operational Planning using Climatological Observations for M...
收藏 引用
Conference on Modeling and Simulation for Defense Systems and Applications XI
作者: O'Connor, Alison Kirtman, Benjamin Harrison, Scott Gorman, Joe Charles River Analyt 625 Mt Auburn St Cambridge MA 02318 USA Univ Miami Rosential Sch Marine & Atmospher Sci 4600 Rickenbacker Causeway Miami FL 33149 USA
The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts ... 详细信息
来源: 评论
Relaxations for probabilistically constrained stochastic programming problems: review and extensions
收藏 引用
Annals of Operations Research 2018年 1-22页
作者: Lejeune, Miguel A. Prékopa, A. Department of Decision Sciences George Washington University Washington DC United States Rutgers University Piscataway NJ United States
We consider probabilistically constrained stochastic programming problems, in which the random variables are in the right-hand sides of the stochastic inequalities defining the joint chance constraints. Problems of th... 详细信息
来源: 评论
Demonstrating Principled Uncertainty Modeling for Recommender Ecosystems with RecSim NG  20
Demonstrating Principled Uncertainty Modeling for Recommende...
收藏 引用
14th ACM Conference on Recommender Systems (RECSYS)
作者: Mladenov, Martin Hsu, Chih-wei Jain, Vihan Ie, Eugene Colby, Christopher Mayoraz, Nicolas Pham, Hubert Tran, Dustin Vendrov, Ivan Boutilier, Craig Google Res Mountain View CA 94043 USA
We develop RECSIM NG, a probabilistic platform that supports natural, concise specification and learning of models for multi-agent recommender systems simulation. RECSIM NG is a scalable, modular, differentiable simul... 详细信息
来源: 评论
Unifying Logic and Probability: A New Dawn for AI?
Unifying Logic and Probability: A New Dawn for AI?
收藏 引用
15th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU)
作者: Russell, Stuart Univ Calif Berkeley Berkeley CA 94720 USA
Logic and probability theory are two of the most important branches of mathematics and each has played a significant role in artificial intelligence (AI) research. Beginning with Leibniz, scholars have attempted to un... 详细信息
来源: 评论
Generative Datalog with Continuous Distributions  20
Generative Datalog with Continuous Distributions
收藏 引用
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS)
作者: Grohe, Martin Kaminski, Benjamin Lucien Katoen, Joost-Pieter Lindner, Peter Rhein Westfal TH Aachen Aachen Germany UCL London England
Arguing for the need to combine declarative and probabilistic programming, Barany et al. (TODS 2017) recently introduced a probabilistic extension of Datalog as a "purely declarative probabilistic programming lan... 详细信息
来源: 评论
Hybrid-AI Approach to Health Monitoring of Vehicle Control System  70
Hybrid-AI Approach to Health Monitoring of Vehicle Control S...
收藏 引用
70th Annual Reliability and Maintainability Symposium (RAMS)
作者: Lu, Kenneth Hiett, Margarita Cross, Ernest Vincent Reposa, Michael Kain, Aron Davis, Erik Charles River Analyt 625 Mt Auburn St Cambridge MA 02138 USA BH Technol LLC 26 Firemens Mem Dr Pomona NY 10970 USA
Advances in Artificial Intelligence and Machine Learning AI/ML have demonstrated enormous potential in improving and optimizing condition-based maintenance processes. In this paper, we present novel research that leve... 详细信息
来源: 评论