咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 133 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 320 篇 probabilistic pr...
  • 33 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
320 条 记 录,以下是31-40 订阅
排序:
Exact Recursive probabilistic programming
收藏 引用
PROCEEDINGS OF THE ACM ON programming LANGUAGES-PACMPL 2023年 第OOPSLA期7卷 665-695页
作者: Chiang, David McDonald, Colin Shan, Chung-chieh Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA Indiana Univ Dept Comp Sci Bloomington IN USA
Recursive calls over recursive data are useful for generating probability distributions, and probabilistic programming allows computations over these distributions to be expressed in a modular and intuitive way. Exact... 详细信息
来源: 评论
Concavity and efficient points of discrete distributions in probabilistic programming
收藏 引用
MATHEMATICAL programming 2000年 第1期89卷 55-77页
作者: Dentcheva, D Prékopa, A Ruszczynski, A Stevens Inst Technol Dept Math Sci Hoboken NJ 07030 USA RUTCOR Piscataway NJ 08854 USA Rutgers State Univ Dept Management Sci & Informat Syst Piscataway NJ 08854 USA
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivale... 详细信息
来源: 评论
Bayesian Modelling of Student Misconceptions in the one-digit Multiplication with probabilistic programming  16
Bayesian Modelling of Student Misconceptions in the one-digi...
收藏 引用
6th International Conference on Learning Analytics and Knowledge (LAK)
作者: Taraghi, Behnam Saranti, Anna Legenstein, Robert Ebner, Martin Graz Univ Technol Educ Technol Munzgrabenstr 35 A-8010 Graz Austria Graz Univ Technol Inst Theoret Comp Sci Inffeldgasse 16b-1 A-8010 Graz Austria
One-digit multiplication errors are one of the most extensively analysed mathematical problems. Research work primarily emphasises the use of statistics whereas learning analytics can go one step further and use machi... 详细信息
来源: 评论
A Design Proposal for Gen: probabilistic programming with Fast Custom Inference via Code Generation  2
A Design Proposal for Gen: Probabilistic Programming with Fa...
收藏 引用
2nd ACM SIGPLAN InternationalWorkshop on Machine Learning and programming Languages (MAPL)
作者: Cusumano-Towner, Marco Mansinghka, Vikash K. MIT Probabilist Comp Project 77 Massachusetts Ave Cambridge MA 02139 USA
probabilistic programming languages have the potential to make probabilistic modeling and inference easier to use in practice, but only if inference is sufficiently fast and accurate for real applications. Thus far, t... 详细信息
来源: 评论
Solving probabilistic programming problems involving multi-choice parameters
收藏 引用
OPSEARCH 2011年 第3期48卷 217-235页
作者: Acharya, Srikumar Biswal, Mahendra Indian Inst Technol Dept Math Kharagpur 721302 W Bengal India
probabilistic programming is used in some optimization problems where some or all parameters are considered as random variables, in order to deal with uncertainty, which is an inherent feature of the system. The situa... 详细信息
来源: 评论
Fabular: Regression Formulas as probabilistic programming  16
Fabular: Regression Formulas as Probabilistic Programming
收藏 引用
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of programming Languages (POPL)
作者: Borgstrom, Johannes Gordon, Andrew D. Ouyang, Long Russo, Claudio Scibior, Adam Szymczak, Marcin Uppsala Univ S-75105 Uppsala Sweden Microsoft Res Bangalore Karnataka India Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland Stanford Univ Stanford CA 94305 USA Univ Cambridge Cambridge CB2 1TN England MPI Tubingen Tubingen Germany
Regression formulas are a domain-specific language adopted by several R packages for describing an important and useful class of statistical models: hierarchical linear regressions. Formulas are succinct, expressive, ... 详细信息
来源: 评论
A Live, Multiple-Representation probabilistic programming Environment for Novices  16
A Live, Multiple-Representation Probabilistic Programming En...
收藏 引用
34th Annual CHI Conference on Human Factors in Computing Systems (CHI4GOOD)
作者: Gorinova, Maria I. Sarkar, Advait Blackwell, Alan F. Syme, Don Univ Cambridge Comp Lab 15 JJ Thomson Ave Cambridge England Microsoft Res Cambridge Cambridge England
We present a live, multiple-representation novice environment for probabilistic programming based on the Infer. NET language. When compared to a text-only editor in a controlled experiment on 16 participants, our syst... 详细信息
来源: 评论
Fast and Correct Gradient-Based Optimisation for probabilistic programming via Smoothing  1
收藏 引用
32nd European Symposium on programming (ESOP) Held as Part of the 26th European Joint Conferences on Theory and Practice of Software (ETAPS)
作者: Khajwal, Basim Ong, C-H Luke Wagner, Dominik Univ Oxford Oxford England Nanyang Technol Univ Singapore Singapore
We study the foundations of variational inference, which frames posterior inference as an optimisation problem, for probabilistic programming. The dominant approach for optimisation in practice is stochastic gradient ... 详细信息
来源: 评论
HackPPL: A Universal probabilistic programming Language  3
HackPPL: A Universal Probabilistic Programming Language
收藏 引用
3rd ACM SIGPLAN International Workshop on Machine Learning and programming Languages (MAPL)
作者: Ai, Jessica Arora, Nimar S. Dong, Ning Gokkaya, Beliz Jiang, Thomas Kubendran, Anitha Kumar, Arun Tingley, Michael Torabi, Narjes Facebook Inc Menlo Pk CA 94025 USA
HackPPL is a probabilistic programming language (PPL) built within the Hack programming language. Its universal inference engine allows developers to perform inference across a diverse set of models expressible in arb... 详细信息
来源: 评论
Practical probabilistic programming
收藏 引用
20th International Conference on Inductive Logic programming (ILP)
作者: Pfeffer, Avi Charles River Analyt Cambridge MA 02140 USA
probabilistic programming promises to make probabilistic modeling easier by making it possible to create models using the power of programming languages, and by applying general-purpose algorithms to reason about mode... 详细信息
来源: 评论