咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 134 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 321 篇 probabilistic pr...
  • 34 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 14 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
321 条 记 录,以下是51-60 订阅
排序:
Correctness of Sequential Monte Carlo Inference for probabilistic programming Languages  1
收藏 引用
30th European Symposium on programming (ESOP) Held as Part of the 24th European Joint Conferences on Theory and Practice of Software (ETAPS)
作者: Lunden, Daniel Borgstrom, Johannes Broman, David KTH Royal Inst Technol Digital Futures Stockholm Sweden KTH Royal Inst Technol EECS Stockholm Sweden Uppsala Univ Uppsala Sweden
probabilistic programming is an approach to reasoning under uncertainty by encoding inference problems as programs. In order to solve these inference problems, probabilistic programming languages (PPLs) employ differe... 详细信息
来源: 评论
Guaranteed Bounds for Posterior Inference in Universal probabilistic programming  2022
Guaranteed Bounds for Posterior Inference in Universal Proba...
收藏 引用
43rd ACM SIGPLAN International Conference on programming Language Design and Implementation (PLDI)
作者: Beutner, Raven Ong, C-H Luke Zaiser, Fabian CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany Univ Oxford Oxford England
We propose a new method to approximate the posterior distribution of probabilistic programs by means of computing guaranteed bounds. The starting point of our work is an interval-based trace semantics for a recursive,... 详细信息
来源: 评论
Reactive probabilistic programming  2020
Reactive Probabilistic Programming
收藏 引用
41st ACM SIGPLAN Conference on programming Language Design and Implementation (PLDI)
作者: Baudart, Guillaume Mandel, Louis Atkinson, Eric Sherman, Benjamin Pouzet, Marc Carbin, Michael IBM Res MIT IBM Watson AI Lab Armonk NY 10504 USA MIT Cambridge MA 02139 USA PSL Res Univ Ecole Normale Super Paris France
Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or SCADE used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, t... 详细信息
来源: 评论
Real-Time GA-Based probabilistic programming in Application to Robot Control  1
收藏 引用
9th International Conference on Artificial General Intelligence (AGI) Held as Part of Joint Multi-Conference on Human-Level Intelligence (HLAI)
作者: Potapov, Alexey Rodionov, Sergey Potapova, Vita ITMO Univ St Petersburg Russia St Petersburg State Univ St Petersburg Russia AIDEUS St Petersburg Russia Aix Marseille Univ CNRS LAM UMR 7326 F-13388 Marseille France
Possibility to solve the problem of planning and plan recovery for robots using probabilistic programming with optimization queries, which is being developed as a framework for AGI and cognitive architectures, is cons... 详细信息
来源: 评论
Automatic Alignment in Higher-Order probabilistic programming Languages  32nd
Automatic Alignment in Higher-Order Probabilistic Programmin...
收藏 引用
32nd European Symposium on programming (ESOP) Held as Part of the 26th European Joint Conferences on Theory and Practice of Software (ETAPS)
作者: Lunden, Daniel Caylak, Gizem Ronquist, Fredrik Broman, David KTH Royal Inst Technol EECS & Digital Futures Stockholm Sweden Swedish Museum Nat Hist Dept Bioinformat & Genet Stockholm Sweden Stockholm Univ Dept Zool Stockholm Sweden
probabilistic programming Languages (PPLs) allow users to encode statistical inference problems and automatically apply an inference algorithm to solve them. Popular inference algorithms for PPLs, such as sequential M... 详细信息
来源: 评论
Vate: Runtime Adaptable probabilistic programming for Java  1
Vate: Runtime Adaptable Probabilistic Programming for Java
收藏 引用
1st Workshop on Machine Learning and Systems (EuroMLSys)
作者: Goodman, Daniel Pocock, Adam Peck, Jason Steele, Guy Oracle Labs Redwood City CA 94065 USA
Inspired by earlier work on Augur, Vate is a probabilistic programming language for the construction of JVM based probabilistic models with an Object-Oriented interface. As a compiled language it is able to examine th... 详细信息
来源: 评论
Stan: A probabilistic programming Language for Bayesian Inference and Optimization
收藏 引用
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS 2015年 第5期40卷 530-543页
作者: Gelman, Andrew Lee, Daniel Guo, Jiqiang Columbia Univ Stat & Polit Sci New York NY 10027 USA Columbia Univ New York NY 10027 USA
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promis... 详细信息
来源: 评论
Compiling Stan to Generative probabilistic Languages and Extension to Deep probabilistic programming  2021
Compiling Stan to Generative Probabilistic Languages and Ext...
收藏 引用
42nd ACM SIGPLAN International Conference on programming Language Design and Implementation (PLDI)
作者: Baudart, Guillaume Burroni, Javier Hirzel, Martin Mandel, Louis Shinnar, Avraham PSL Univ Ecole Normale Super INRIA Paris Paris France UMass Amherst Amherst MA USA IBM Res MIT IBM Watson AI Lab Armonk NY USA
Stan is a probabilistic programming language that is popular in the statistics community, with a high-level syntax for expressing probabilistic models. Stan differs by nature from generative probabilistic programming ... 详细信息
来源: 评论
Democratizing AI for Condition-Based Maintenance Leveraging probabilistic programming for Symbolic Reasoning
Democratizing AI for Condition-Based Maintenance Leveraging ...
收藏 引用
69th Annual Reliability and Maintainability Symposium (RAMS)
作者: Lu, Kenneth Cvijic, Sanja Dewhurst, David Gorman, Joe Hyland, Rob Templin, James Charles River Analyt 625 Mt Auburn St Cambridge MA 02138 USA Army Futures Command 701 Brazos St Austin TX 78701 USA
Advances in AI/ML have demonstrated enormous potential in improving and optimizing condition-based maintenance processes;however, AI/ML solutions themselves inevitably become a maintenance liability, wherein the end u... 详细信息
来源: 评论
Tabular: A Schema-Driven probabilistic programming Language  14
Tabular: A Schema-Driven Probabilistic Programming Language
收藏 引用
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of programming Languages (POPL)
作者: Gordon, Andrew D. Graepel, Thore Rolland, Nicolas Russo, Claudio Borgstroem, Johannes Guiver, John Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland Uppsala Univ Uppsala Sweden
We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design ... 详细信息
来源: 评论