咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 133 篇 会议
  • 6 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 166 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 19 篇 控制科学与工程
    • 10 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 石油与天然气工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 79 篇 理学
    • 59 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生态学
  • 39 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 7 篇 教育学
    • 5 篇 心理学(可授教育学...
    • 3 篇 教育学
  • 6 篇 经济学
    • 5 篇 应用经济学
    • 2 篇 理论经济学
  • 3 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 320 篇 probabilistic pr...
  • 33 篇 bayesian inferen...
  • 22 篇 machine learning
  • 13 篇 static analysis
  • 13 篇 markov chain mon...
  • 12 篇 semantics
  • 9 篇 denotational sem...
  • 9 篇 functional progr...
  • 8 篇 variational infe...
  • 7 篇 uncertainty quan...
  • 7 篇 deep learning
  • 7 篇 operational sema...
  • 7 篇 logic programmin...
  • 7 篇 sequential monte...
  • 7 篇 symbolic executi...
  • 6 篇 reliability
  • 6 篇 bayesian statist...
  • 6 篇 probabilistic in...
  • 5 篇 type systems
  • 5 篇 program analysis

机构

  • 11 篇 univ oxford oxfo...
  • 9 篇 mit cambridge ma...
  • 7 篇 univ edinburgh e...
  • 6 篇 uppsala univ upp...
  • 6 篇 microsoft res re...
  • 6 篇 imdea software i...
  • 6 篇 carnegie mellon ...
  • 5 篇 univ edinburgh e...
  • 5 篇 rhein westfal th...
  • 5 篇 stanford univ st...
  • 5 篇 microsoft res ca...
  • 4 篇 katholieke univ ...
  • 4 篇 ucl england
  • 4 篇 swiss fed inst t...
  • 4 篇 imperial coll lo...
  • 4 篇 mit 77 massachus...
  • 4 篇 univ calif berke...
  • 3 篇 katholieke univ ...
  • 3 篇 univ wisconsin m...
  • 3 篇 cornell univ ith...

作者

  • 11 篇 gordon andrew d.
  • 9 篇 mansinghka vikas...
  • 8 篇 borgstrom johann...
  • 7 篇 katoen joost-pie...
  • 7 篇 barthe gilles
  • 6 篇 misailovic sasa
  • 6 篇 de raedt luc
  • 6 篇 staton sam
  • 5 篇 mckinley kathryn...
  • 5 篇 mandel louis
  • 5 篇 baudart guillaum...
  • 5 篇 lew alexander k.
  • 5 篇 hoffmann jan
  • 5 篇 carbin michael
  • 5 篇 russo claudio
  • 5 篇 broman david
  • 5 篇 hsu justin
  • 4 篇 dutta saikat
  • 4 篇 tolpin david
  • 4 篇 gelman andrew

语言

  • 306 篇 英文
  • 13 篇 其他
  • 1 篇 德文
检索条件"主题词=Probabilistic Programming"
320 条 记 录,以下是71-80 订阅
排序:
Abstractions for probabilistic programming to Support Model Development
Abstractions for Probabilistic Programming to Support Model ...
收藏 引用
作者: Bernstein, Ryan Columbia University
学位级别:Ph.D., Doctor of Philosophy
probabilistic programming is a recent advancement in probabilistic modeling whereby we can express a model as a program with little concern for the details of probabilistic inference. probabilistic programming thereby... 详细信息
来源: 评论
JAX Based Parallel Inference for Reactive probabilistic programming  2022
JAX Based Parallel Inference for Reactive Probabilistic Prog...
收藏 引用
23rd International Conference on Languages, Compilers, and Tools for Embedded System (LCTES)
作者: Baudart, Guillaume Mandel, Louis Tekin, Reyyan PSL Univ DI ENS Ecole Normale Super CNRSInria Paris France IBM Res Armonk NY USA
ProbZelus is a synchronous probabilistic language for the design of reactive probabilistic models in interaction with an environment. Reactive inference methods continuously learn distributions over the unobserved par... 详细信息
来源: 评论
Conditioning in probabilistic programming
收藏 引用
ACM TRANSACTIONS ON programming LANGUAGES AND SYSTEMS 2018年 第1期40卷 4-4页
作者: Olmedo, Federico Gretz, Friedrich Jansen, Nils Kaminski, Benjamin Lucien Katoen, Joost-Pieter Mciver, Annabelle Univ Chile Dept Comp Sci Santiago Chile Bosch Corp Res Gerlingen Germany Radboud Univ Nijmegen Nijmegen Netherlands Rhein Westfal TH Aachen Ahornstr 55 D-52074 Aachen Germany Macquarie Univ Dept Comp Sydney NSW 2109 Australia Robert Bosch GmbH D-70465 Stuttgart Germany Univ Nijmegen Fac Sci Postbus 9010 NL-6500 GL Nijmegen Netherlands
This article investigates the semantic intricacies of conditioning, a main feature in probabilistic programming. Our study is based on an extension of the imperative probabilistic guarded command language pGCL with co... 详细信息
来源: 评论
Synthetic topology in Homotopy Type Theory for probabilistic programming
收藏 引用
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE 2021年
作者: Bidlingmaier, Martin E. Faissole, Florian Spitters, Bas Aarhus Univ Dept Comp Sci Aarhus Denmark Univ Paris Saclay INRIA LRI Gif Sur Yvette France
The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from di... 详细信息
来源: 评论
PyMC: a modern, and comprehensive probabilistic programming framework in Python
收藏 引用
PEERJ COMPUTER SCIENCE 2023年 9卷 e1516-e1516页
作者: Abril-Pla, Oriol Andreani, Virgile Carroll, Colin Dong, Larry Fonnesbeck, Christopher J. Kochurov, Maxim Kumar, Ravin Lao, Junpeng Luhmann, Christian C. Martin, Osvaldo A. Osthege, Michael Vieira, Ricardo Wiecki, Thomas Zinkov, Robert ArviZ Devs Barcelona Spain Boston Univ Biomed Engn Dept Boston MA USA Boston Univ Biol Design Ctr Boston MA USA Google Cambridge MA USA Univ Toronto Dalla Lana Sch Publ Hlth Toronto ON Canada Hosp Sick Children Child Hlth Evaluat Sci Toronto ON Canada Philadelphia Phillies Baseball Operat Res & Dev Philadelphia PA 19148 USA PyMC Labs Berlin Germany Google Mountain View CA USA Google Zurich Switzerland SUNY Stony Brook Dept Psychol Stony Brook NY USA SUNY Stony Brook Inst Adv Computat Sci Stony Brook NY USA Univ Nacl San Luis IMASL CONICET San Luis Argentina Forschungszentrum Julich Julich Germany Univ Oxford Oxford England
PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to... 详细信息
来源: 评论
Fabular: Regression Formulas as probabilistic programming
收藏 引用
ACM SIGPLAN NOTICES 2016年 第1期51卷 271-283页
作者: Borgstrom, Johannes Gordon, Andrew D. Ouyang, Long Russo, Claudio Scibior, Adam Szymczak, Marcin Uppsala Univ S-75105 Uppsala Sweden Microsoft Res Bangalore Karnataka India Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland Stanford Univ Stanford CA 94305 USA Univ Cambridge Cambridge CB2 1TN England MPI Tubingen Tubingen Germany
Regression formulas are a domain-specific language adopted by several R packages for describing an important and useful class of statistical models: hierarchical linear regressions. Formulas are succinct, expressive, ... 详细信息
来源: 评论
Declarative probabilistic programming with Datalog
收藏 引用
ACM TRANSACTIONS ON DATABASE SYSTEMS 2017年 第4期42卷 22-22页
作者: Barany, Vince Ten Cate, Balder Kimelfeld, Benny Olteanu, Dan Vagena, Zografoula LogicBlox Inc Atlanta GA 30309 USA Technion Israel Inst Technol Fac Comp Sci Taub 703 IL-32000 Haifa Israel Univ Oxford Wolfson BldgPk Rd Oxford OX1 3QD England Google Inc 1600 Amphitheatre Pkwy Mountain View CA 94043 USA Infor Inc 1349 West Peachtree St Atlanta GA 30309 USA
probabilistic programming languages are used for developing statistical models. They typically consist of two components: a specification of a stochastic process (the prior) and a specification of observations that re... 详细信息
来源: 评论
A Lambda-Calculus Foundation for Universal probabilistic programming
收藏 引用
ACM SIGPLAN NOTICES 2016年 第9期51卷 33-46页
作者: Borgstrom, Johannes Dal Lago, Ugo Gordon, Andrew D. Szymczak, Marcin Uppsala Univ Uppsala Sweden Univ Bologna I-40126 Bologna Italy INRIA Rocquencourt France Microsoft Res Cambridge England Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland
We develop the operational semantics of an untyped probabilistic lambda-calculus with continuous distributions, and both hard and soft constraints, as a foundation for universal probabilistic programming languages suc... 详细信息
来源: 评论
Replicated Computational Results (RCR) Report for "ProPPA: probabilistic programming for Stochastic Dynamical Systems"
收藏 引用
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION 2018年 第1期28卷 4-4页
作者: Parker, David Univ Birmingham Sch Comp Sci Birmingham B15 2TT W Midlands England
"ProPPA: probabilistic programming for Stochastic Dynamical Systems," by Georgoulas, Hillston, and Sanguinetti, introduces the ProPPA formalism, which brings together ideas from stochastic process algebras w... 详细信息
来源: 评论
Practical probabilistic programming with Monads
收藏 引用
ACM SIGPLAN NOTICES 2015年 第12期50卷 165-176页
作者: Scibior, Adam Ghahramani, Zoubin Gordon, Andrew D. Univ Cambridge Cambridge CB2 1TN England Microsoft Res Redmond WA USA Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland
The machine learning community has recently shown a lot of interest in practical probabilistic programming systems that target the problem of Bayesian inference. Such systems come in different forms, but they all expr... 详细信息
来源: 评论