咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 14 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 3 篇 控制科学与工程
  • 4 篇 理学
    • 4 篇 数学
    • 1 篇 系统科学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 15 篇 probabilistic in...
  • 7 篇 statistical rela...
  • 4 篇 logic programs w...
  • 3 篇 expectation maxi...
  • 2 篇 distribution sem...
  • 2 篇 probabilistic lo...
  • 2 篇 abduction
  • 2 篇 problog
  • 2 篇 probabilistic ex...
  • 2 篇 structure learni...
  • 2 篇 answer set progr...
  • 2 篇 stochastic logic...
  • 2 篇 binary decision ...
  • 1 篇 genetic programm...
  • 1 篇 performance
  • 1 篇 computer circuit...
  • 1 篇 front end
  • 1 篇 computation theo...
  • 1 篇 medical computin...
  • 1 篇 information anal...

机构

  • 2 篇 univ london impe...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ porto fac s...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ ferrara dep...
  • 1 篇 inesc tec porto
  • 1 篇 univ ferrara dip...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ bari aldo m...
  • 1 篇 dipartimento di ...
  • 1 篇 univ wisconsin d...
  • 1 篇 univ bologna dei...
  • 1 篇 univ ferrara dip...
  • 1 篇 king abdulaziz c...
  • 1 篇 univ porto cracs...
  • 1 篇 cintesis porto
  • 1 篇 univ ferrara end...
  • 1 篇 univ ferrara end...
  • 1 篇 natl univ irelan...
  • 1 篇 univ ferrara dip...

作者

  • 7 篇 riguzzi fabrizio
  • 3 篇 bellodi elena
  • 2 篇 muggleton stephe...
  • 2 篇 santos jose
  • 2 篇 dutra ines
  • 2 篇 bragaglia stefan...
  • 2 篇 chen jianzhong
  • 2 篇 corte-real joana
  • 2 篇 rocha ricardo
  • 1 篇 mileo alessandra
  • 1 篇 dovier agostino
  • 1 篇 bizzarri alice
  • 1 篇 nickles matthias
  • 1 篇 gentili elisabet...
  • 1 篇 cussens james
  • 1 篇 fadja arnaud ngu...
  • 1 篇 tarzariol alice
  • 1 篇 burnside elizabe...
  • 1 篇 alsanie waleed
  • 1 篇 zese riccardo

语言

  • 13 篇 英文
  • 2 篇 其他
检索条件"主题词=Probabilistic inductive logic programming"
15 条 记 录,以下是1-10 订阅
排序:
Regularization in probabilistic inductive logic programming  1
收藏 引用
32nd International Conference on inductive logic programming (ILP)
作者: Gentili, Elisabetta Bizzarri, Alice Azzolini, Damiano Zese, Riccardo Riguzzi, Fabrizio Univ Ferrara Dept Engn Ferrara Italy Univ Ferrara Dept Environm & Prevent Sci Ferrara Italy Univ Ferrara Dept Chem Pharmaceut & Agr Sci Ferrara Italy Univ Ferrara Dept Math & Comp Sci Ferrara Italy
probabilistic logic programming combines uncertainty and logic-based languages. Liftable probabilistic logic Programs have been recently proposed to perform inference in a lifted way. LIFTCOVER is an algorithm used to... 详细信息
来源: 评论
Pruning strategies for the efficient traversal of the search space in PILP environments
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2021年 第12期63卷 3183-3215页
作者: Corte-Real, Joana Dutra, Ines Rocha, Ricardo Univ Porto Fac Sci Dept Comp Sci Rua Campo Alegre 1021 P-4169007 Porto Portugal CRACS Porto Portugal INESC TEC Porto Portugal CINTESIS Porto Portugal
probabilistic inductive logic programming (PILP) is a statistical relational learning technique which extends inductive logic programming by considering probabilistic data. The ability to use probabilities to represen... 详细信息
来源: 评论
Towards a logic programming Tool for Cancer Data Analysis
Towards a Logic Programming Tool for Cancer Data Analysis
收藏 引用
Fundamenta Informaticae
作者: Tarzariol, Alice Zanazzo, Eugenia Dovier, Agostino Policriti, Alberto Dipartimento di Scienze Matematiche Informatiche e Fisiche Università Degli Studi di Udine Italy
The main goal of this work is to propose a tool-chain capable of analyzing a data collection of temporally qualified (genetic) mutation profiles, i.e., a collection of DNA-sequences (genes) that present variations wit... 详细信息
来源: 评论
Lifted discriminative learning of probabilistic logic programs
收藏 引用
MACHINE LEARNING 2019年 第7期108卷 1111-1135页
作者: Fadja, Arnaud Nguembang Riguzzi, Fabrizio Univ Ferrara Dipartimento Ingn Via Saragat 1 I-44122 Ferrara Italy Univ Ferrara Dipartimento Matemat & Informat Via Saragat 1 I-44122 Ferrara Italy
probabilistic logic programming (PLP) provides a powerful tool for reasoning with uncertain relational models. However, learning probabilistic logic programs is expensive due to the high cost of inference. Among the p... 详细信息
来源: 评论
Learning failure-free PRISM programs
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2015年 67卷 73-110页
作者: Alsanie, Waleed Cussens, James King Abdulaziz City Sci & Technol Commun & Informat Technol Res Inst Natl Ctr Computat Technol & Appl Math Riyadh Saudi Arabia Univ York Dept Comp Sci York YO10 5DD N Yorkshire England
PRISM is a probabilistic logic programming formalism which allows defining a probability distribution over possible worlds. This paper investigates learning a class of generative PRISM programs known as failure-free. ... 详细信息
来源: 评论
Structure learning of probabilistic logic programs by searching the clause space
收藏 引用
THEORY AND PRACTICE OF logic programming 2015年 第2期15卷 169-212页
作者: Bellodi, Elena Riguzzi, Fabrizio Univ Ferrara Dipartimento Ingn I-44122 Ferrara Italy Univ Ferrara Dipartimento Matemat & Informat I-44122 Ferrara Italy
Learning probabilistic logic programming languages is receiving an increasing attention, and systems are available for learning the parameters (PRISM, LeProbLog, LFI-ProbLog and EMBLEM) or both structure and parameter... 详细信息
来源: 评论
SkILL - a Stochastic inductive logic Learner  14
SkILL - a Stochastic Inductive Logic Learner
收藏 引用
IEEE 14th International Conference on Machine Learning and Applications ICMLA
作者: Corte-Real, Joana Mantadelis, Theofrastos Dutra, Ines Rocha, Ricardo Burnside, Elizabeth Univ Porto CRACS Rua Campo Alegre P-4169007 Oporto Portugal Univ Porto INESC TEC P-4169007 Oporto Portugal Univ Wisconsin Dept Radiol Madison WI 53706 USA
probabilistic inductive logic programming (PILP) is a relatively unexplored area of Statistical Relational Learning which extends classic inductive logic programming (ILP). Within this scope, we introduce SkILL, a Sto... 详细信息
来源: 评论
Web Stream Reasoning Using probabilistic Answer Set programming
Web Stream Reasoning Using Probabilistic Answer Set Programm...
收藏 引用
8th International Conference on Web Reasoning and Rule Systems (RR)
作者: Nickles, Matthias Mileo, Alessandra Natl Univ Ireland INSIGHT Ctr Data Analyt Galway Ireland
We propose a framework for reasoning about dynamic Web data, based on probabilistic Answer Set programming (ASP). Our approach, which is prototypically implemented, allows for the annotation of first-order formulas as... 详细信息
来源: 评论
Expectation maximization over binary decision diagrams for probabilistic logic programs
收藏 引用
INTELLIGENT DATA ANALYSIS 2013年 第2期17卷 343-363页
作者: Bellodi, Elena Riguzzi, Fabrizio Univ Ferrara ENDIF Dipartimento Ingn I-44122 Ferrara Italy
Recently much work in Machine Learning has concentrated on using expressive representation languages that combine aspects of logic and probability. A whole field has emerged, called Statistical Relational Learning, ri... 详细信息
来源: 评论
Applying the information bottleneck to statistical relational learning
收藏 引用
MACHINE LEARNING 2012年 第1期86卷 89-114页
作者: Riguzzi, Fabrizio Di Mauro, Nicola Univ Ferrara Dipartimento Ingn I-44100 Ferrara Italy Univ Bari Aldo Moro Dipartimento Informat Bari Italy
In this paper we propose to apply the Information Bottleneck (IB) approach to the sub-class of Statistical Relational Learning (SRL) languages that are reducible to Bayesian networks. When the resulting networks invol... 详细信息
来源: 评论