The book begins with a review of classical results in the physical and engineering sciences where coherence plays a fundamental role. Then least squares theory and the theory of minimum mean-squared error estimation a...
详细信息
ISBN:
(数字)9783031133312
ISBN:
(纸本)9783031133305;9783031133336
The book begins with a review of classical results in the physical and engineering sciences where coherence plays a fundamental role. Then least squares theory and the theory of minimum mean-squared error estimation are developed, with special attention paid to statistics that may be interpreted as coherence statistics. A chapter on classical hypothesis tests for covariance structure introduces the next three chapters on matched and adaptive subspace detectors. These detectors are derived from likelihood reasoning, but it is their geometries and invariances that qualify them as coherence statistics. A chapter on independence testing in space-time data sets leads to a definition of broadband coherence, and contains novel applications to cognitive radio and the analysis of cyclostationarity. The chapter on subspace averaging reviews basic results and derives an order-fitting rule for determining the dimension of an average subspace. These results are used to enumerate sources of acoustic and electromagnetic radiation and to cluster subspaces into similarity classes. The chapter on performance bounds and uncertainty quantification emphasizes the geometry of the Cramèr-Rao bound and its related information geometry.
Privacy in statistical databases is about ?nding tradeo?s to the tension between the increasing societal and economical demand for accurate information and the legal and ethical obligation to protect the privacy of in...
详细信息
ISBN:
(数字)9783540259558
ISBN:
(纸本)9783540221180
Privacy in statistical databases is about ?nding tradeo?s to the tension between the increasing societal and economical demand for accurate information and the legal and ethical obligation to protect the privacy of individuals and enterprises, which are the source of the statistical data. Statistical agencies cannot expect to collect accurate information from individual or corporate respondents unless these feel the privacy of their responses is guaranteed; also, recent surveys of Web users show that a majority of these are unwilling to provide data to a Web site unless they know that privacy protection measures are in place. “Privacy in Statistical Databases2004” (PSD2004) was the ?nal conference of the CASC project (“Computational Aspects of Statistical Con?dentiality”, IST-2000-25069). PSD2004 is in the style of the following conferences: “Stat- tical Data Protection”, held in Lisbon in 1998 and with proceedings published by the O?ce of O?cial Publications of the EC, and also the AMRADS project SDC Workshop, held in Luxemburg in 2001 and with proceedings published by Springer-Verlag, as LNCS Vol. 2316. The Program Committee accepted 29 papers out of 44 submissions from 15 di?*** reviews. These proceedings contain the revised versions of the accepted papers. These papers cover the foundations and methods of tabular data protection, masking methods for the protection of individual data (microdata), synthetic data generation, disclosure risk analysis, and software/case studies.
This book constitutes the refereed proceedings of the 6th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2018, held in Hanoi, Vietnam, in March 2018.;The 3...
详细信息
ISBN:
(数字)9783319754291
ISBN:
(纸本)9783319754284
This book constitutes the refereed proceedings of the 6th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2018, held in Hanoi, Vietnam, in March 2018.;The 39 revised full papers presented in this book were carefully reviewed and selected from 76 initial submissions. The papers are organized in topical sections on uncertainty management and decision support; clustering and classification; machine learning applications; statistical methods; and econometric applications.
This book provides a frequentist semantics for conditionalization on partially known events, which is given as a straightforward generalization of classical conditional probability via so-called probability testbeds. ...
详细信息
ISBN:
(数字)9783319698687
ISBN:
(纸本)9783319698670
This book provides a frequentist semantics for conditionalization on partially known events, which is given as a straightforward generalization of classical conditional probability via so-called probability testbeds. It analyzes the resulting partial conditionalization, called frequentist partial (F.P.) conditionalization, from different angles, i.e., with respect to partitions, segmentation, independence, and chaining. It turns out that F.P. conditionalization meets and generalizes Jeffrey conditionalization, i.e., from partitions to arbitrary collections of events, opening it for reassessment and a range of potential applications. A counterpart of Jeffrey’s rule for the case of independence holds in our frequentist semantics. This result is compared to Jeffrey’s commutative chaining of independent updates.;The postulate of Jeffrey's probability kinematics, which is rooted in the subjectivism of Frank P. Ramsey, is found to be a consequence in our frequentist semantics. This way the book creates a link between the Kolmogorov system of probability and one of the important Bayesian frameworks. Furthermore, it shows a preservation result for conditional probabilities under the full update range and compares F.P. semantics with an operational semantics of classical conditional probability in terms of so-called conditional events. Lastly, it looks at the subjectivist notion of desirabilities and proposes a more fine-grained analysis of desirabilities a posteriori.;This book appeals to researchers who are involved in any kind of knowledge processing systems. F.P. conditionalization is a straightforward, fundamental concept that fits human intuition, and is systematically linked to one of the important Bayesian frameworks. As such, the book is interesting for anybody investigating the semantics of reasoning systems.
暂无评论