咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 48 篇 会议
  • 15 篇 资讯
  • 2 篇 学位论文

馆藏范围

  • 165 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 113 篇 工学
    • 86 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 16 篇 生物工程
    • 9 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 化学工程与技术
    • 8 篇 软件工程
    • 5 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 72 篇 理学
    • 67 篇 生物学
    • 12 篇 化学
    • 4 篇 数学
    • 4 篇 物理学
    • 3 篇 统计学(可授理学、...
  • 19 篇 农学
    • 10 篇 作物学
  • 13 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 药学(可授医学、理...
  • 12 篇 管理学
    • 12 篇 管理科学与工程(可...

主题

  • 165 篇 protein secondar...
  • 17 篇 deep learning
  • 17 篇 machine learning
  • 14 篇 neural networks
  • 12 篇 bioinformatics
  • 10 篇 protein structur...
  • 10 篇 multiple sequenc...
  • 8 篇 svm
  • 8 篇 compound pyramid...
  • 8 篇 structure predic...
  • 7 篇 support vector m...
  • 7 篇 feature extracti...
  • 6 篇 pssm
  • 6 篇 protein structur...
  • 6 篇 homology modelin...
  • 6 篇 convolutional ne...
  • 5 篇 molecular modeli...
  • 5 篇 support vector m...
  • 5 篇 pcr
  • 5 篇 convolutional ne...

机构

  • 4 篇 univ sci & techn...
  • 4 篇 qilu univ techno...
  • 3 篇 univ cyprus dept...
  • 2 篇 visvesvaraya nat...
  • 2 篇 univ gadjah mada...
  • 2 篇 univ estadual ca...
  • 2 篇 georgia state un...
  • 2 篇 yunnan univ sch ...
  • 2 篇 qilu univ techno...
  • 2 篇 univ cyprus dept...
  • 2 篇 shri ramdeobaba ...
  • 2 篇 de montfort univ...
  • 2 篇 univ oviedo dept...
  • 2 篇 univ sci & techn...
  • 2 篇 univ cyprus dept...
  • 2 篇 institute of int...
  • 2 篇 biocomputing res...
  • 2 篇 iowa state univ ...
  • 2 篇 univ cyprus dept...
  • 1 篇 max planck inst ...

作者

  • 8 篇 yang bingru
  • 7 篇 liu yihui
  • 6 篇 agathocleous mic...
  • 6 篇 ma yuming
  • 6 篇 christodoulou ch...
  • 4 篇 promponas vasili...
  • 3 篇 jin xin
  • 3 篇 cheng jinyong
  • 3 篇 hou wei
  • 3 篇 yao shaowen
  • 3 篇 jiang qian
  • 3 篇 vassiliades vass...
  • 3 篇 yang wei
  • 3 篇 pedrini helio
  • 3 篇 aydin zafer
  • 3 篇 de oliveira gabr...
  • 3 篇 qu wu
  • 3 篇 zhou zhun
  • 3 篇 dias zanoni
  • 2 篇 hassan rohayanti

语言

  • 146 篇 英文
  • 17 篇 其他
  • 2 篇 中文
检索条件"主题词=Protein secondary structure Prediction"
165 条 记 录,以下是11-20 订阅
排序:
protein secondary structure prediction: A Review of Progress and Directions
收藏 引用
CURRENT BIOINFORMATICS 2020年 第2期15卷 90-107页
作者: Smolarczyk, Tomasz Roterman-Konieczna, Irena Stapor, Katarzyna Silesian Tech Univ Inst Informat Akad 16 Gliwice Poland Jagiellonian Univ Dept Bioinformat & Telemed Med Coll Krakow Poland
Background: Over the last few decades, a search for the theory of protein folding has grown into a full-fledged research field at the intersection of biology, chemistry and informatics. Despite enormous effort, there ... 详细信息
来源: 评论
Convolution-Bidirectional Temporal Convolutional Network for protein secondary structure prediction
收藏 引用
IEEE ACCESS 2022年 10卷 117469-117476页
作者: Zhang, Yunqing Ma, Yuming Liu, Yihui Qilu Univ Technol Shandong Acad Sci Sch Comp Sci & Technol Jinan 250353 Peoples R China
As a basic feature extraction method, convolutional neural networks have some information loss problems when dealing with sequence problems, and a temporal convolutional network can compensate for this problem. Howero... 详细信息
来源: 评论
Solving the protein secondary structure prediction Problem With the Hessian Free Optimization Algorithm
收藏 引用
IEEE ACCESS 2022年 10卷 27759-27770页
作者: Charalampous, Konstantinos Agathocleous, Michalis Christodoulou, Chris Promponas, Vasilis Univ Cyprus Dept Comp Sci CY-1678 Nicosia Cyprus Univ Nicosia Dept Comp Sci CY-1700 Nicosia Cyprus Univ Cyprus Dept Biol Sci CY-1678 Nicosia Cyprus
Trying to extract features from complex sequential data for classification and prediction problems is an extremely difficult task. This task is even more challenging when both the upstream and downstream information o... 详细信息
来源: 评论
Self-attention and asymmetric multi-layer perceptron-gated recurrent unit blocks for protein secondary structure prediction
收藏 引用
APPLIED SOFT COMPUTING 2024年 159卷
作者: Ismi, Dewi Pramudi Pulungan, Reza Afiahayati Univ Gadjah Mada Fac Math & Nat Sci Dept Comp Sci & Elect Yogyakarta Indonesia Univ Ahmad Dahlan Fac Ind Technol Dept Informat Yogyakarta Indonesia
protein secondary structure prediction (PSSP) is one of the most prominent and widely -conducted tasks in Bioinformatics. Deep neural networks have become the primary methods for building PSSP models in the last decad... 详细信息
来源: 评论
IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction
收藏 引用
proteinS-structure FUNCTION AND BIOINFORMATICS 2021年 第10期89卷 1277-1288页
作者: Gormez, Yasin Sabzekar, Mostafa Aydin, Zafer Sivas Cumhuriyet Univ Fac Econ & Adm Sci Management Informat Syst Sivas Turkey Birjand Univ Technol Dept Comp Engn Birjand Iran Abdullah Gul Univ Comp Engn Dept Engn Fac Kayseri Turkey
There is a close relationship between the tertiary structure and the function of a protein. One of the important steps to determine the tertiary structure is protein secondary structure prediction (PSSP). For this rea... 详细信息
来源: 评论
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
收藏 引用
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 2023年 11卷 1051268页
作者: Yuan, Lu Ma, Yuming Liu, Yihui Qilu Univ Technol Shandong Acad Sci Sch Comp Sci & Technol Jinan Peoples R China
protein secondary structure prediction (PSSP) is a challenging task in computational biology. However, existing models with deep architectures are not sufficient and comprehensive for deep long-range feature extractio... 详细信息
来源: 评论
protein secondary structure prediction using neural networks and deep learning: A review
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2019年 81卷 1-8页
作者: Wardah, Wafaa Khan, M. G. M. Sharma, Alok Rashid, Mahmood A. Univ South Pacific Sch Comp Informat & Math Sci Suva Fiji Univ South Pacific Sch Engn & Phys Suva Fiji RIKEN Ctr Integrat Med Sci Yokohama Kanagawa Japan Griffith Univ Inst Integrated & Intelligent Syst Nathan Qld Australia Victoria Univ Melbourne Inst Sustainable Ind & Liveable Cities Melbourne Vic Australia
Literature contains over fifty years of accumulated methods proposed by researchers for predicting the secondary structures of proteins in silico. A large part of this collection is comprised of artificial neural netw... 详细信息
来源: 评论
Lightweight proteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation
收藏 引用
BMC BIOINFORMATICS 2022年 第1期23卷 100-100页
作者: Stapor, Katarzyna Kotowski, Krzysztof Smolarczyk, Tomasz Roterman, Irena Silesian Tech Univ Dept Appl Informat Akad 16 PL-44100 Gliwice Poland Jagiellonian Univ Med Coll Dept Bioinformat & Telemed Med 7 PL-30688 Krakow Poland
Background The prediction of protein secondary structures is a crucial and significant step for ab initio tertiary structure prediction which delivers the information about proteins activity and functions. As the expe... 详细信息
来源: 评论
MMEC: Multi-Modal Ensemble Classifier for protein secondary structure prediction  19th
MMEC: Multi-Modal Ensemble Classifier for Protein Secondary ...
收藏 引用
19th International Conference on Computer Analysis of Images and Patterns (CAIP)
作者: de Oliveira, Gabriel Bianchin Pedrini, Helio Dias, Zanoni Univ Estadual Campinas Inst Comp Campinas SP Brazil
The protein secondary structure prediction is an important task with many applications, such as local folding analysis, tertiary structure prediction, and function classification. Driven by the recent success of multi... 详细信息
来源: 评论
protein secondary structure prediction Based on Generative Confrontation and Convolutional Neural Network
收藏 引用
IEEE ACCESS 2020年 8卷 199171-199178页
作者: Zhao, Yawu Zhang, Hualan Liu, Yihui Qilu Univ Technol Sch Comp Sci & Technol Shandong Acad Sci Jinan 250353 Peoples R China
In the field of bioinformatics, the prediction of protein secondary structure is a challenging task, and it is extremely important for determining the structure and function of proteins. In this paper, the generation ... 详细信息
来源: 评论